版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽省阜陽(yáng)市太和中學(xué)高二上數(shù)學(xué)期末監(jiān)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,某圓錐的軸截面是等邊三角形,點(diǎn)是底面圓周上的一點(diǎn),且,點(diǎn)是的中點(diǎn),則異面直線與所成角的余弦值是()A. B.C. D.2.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.3.已知數(shù)列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.34.如右圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針?lè)较驖L動(dòng),M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這樣滾過(guò)大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.5.已知向量,,若,則()A.1 B.C. D.26.直線分別與曲線,交于,兩點(diǎn),則的最小值為()A. B.1C. D.27.下列直線中,傾斜角為銳角的是()A. B.C. D.8.命題“,”的否定是()A., B.,C., D.,9.已知,若,則的取值范圍為()A. B.C. D.10.如圖,D是正方體的一個(gè)“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點(diǎn),P是BC中點(diǎn),Q是AD上的一個(gè)動(dòng)點(diǎn),連PQ,則當(dāng)AC與PQ所成角為最小時(shí),()A. B.C. D.211.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是()A.4 B.3C.2 D.112.設(shè)等比數(shù)列,有下列四個(gè)命題:①{a②是等比數(shù)列;③是等比數(shù)列;④lgan其中正確命題的個(gè)數(shù)是()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正方體中,點(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則異面直線與所成角的取值范圍為____________14.已知等差數(shù)列滿足,請(qǐng)寫出一個(gè)符合條件的通項(xiàng)公式______15.如圖,橢圓的中心在坐標(biāo)原點(diǎn),是橢圓的左焦點(diǎn),分別是橢圓的右頂點(diǎn)和上頂點(diǎn),當(dāng)時(shí),此類橢圓稱為“黃金橢圓”,則“黃金橢圓”的離心率___________.16.若數(shù)列的前n項(xiàng)和,則其通項(xiàng)公式________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.18.(12分)已知橢圓C:經(jīng)過(guò)點(diǎn),且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點(diǎn),都有.若存在,求出r的值,并求此時(shí)△AOB的面積S的取值范圍;若不存在,請(qǐng)說(shuō)明理由19.(12分)已知點(diǎn)F為拋物線:()的焦點(diǎn),點(diǎn)在拋物線上且在x軸上方,.(1)求拋物線的方程;(2)已知直線與曲線交于A,B兩點(diǎn)(點(diǎn)A,B與點(diǎn)P不重合),直線PA與x軸、y軸分別交于C、D兩點(diǎn),直線PB與x軸、y軸分別交于M、N兩點(diǎn),當(dāng)四邊形CDMN的面積最小時(shí),求直線l的方程.20.(12分)求適合下列條件的曲線的標(biāo)準(zhǔn)方程:(1),焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)方程;(2)焦點(diǎn)在軸上,且焦點(diǎn)到準(zhǔn)線的距離是2的拋物線的標(biāo)準(zhǔn)方程21.(12分)已知拋物線C:,經(jīng)過(guò)的直線與拋物線C交于A,B兩點(diǎn)(1)求的值(其中為坐標(biāo)原點(diǎn));(2)設(shè)F為拋物線C的焦點(diǎn),直線為拋物線C的準(zhǔn)線,直線是拋物線C的通徑所在的直線,過(guò)C上一點(diǎn)P()()作直線與拋物線相切,若直線與直線相交于點(diǎn)M,與直線相交于點(diǎn)N,證明:點(diǎn)P在拋物線C上移動(dòng)時(shí),恒為定值,并求出此定值22.(10分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過(guò)點(diǎn)的切線方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計(jì)算即可.【詳解】以過(guò)點(diǎn)且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.2、A【解析】結(jié)合等差中項(xiàng)和等比中項(xiàng)分別求出和,代值運(yùn)算化簡(jiǎn)即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A3、C【解析】根據(jù),(且),利用累加法求得,再根據(jù)恒成立求解.【詳解】因?yàn)閿?shù)列滿足,,(且)所以,,,,因?yàn)楹愠闪?,所以,則M的最小值是,故選:C4、A【解析】如圖:如圖,取小圓上一點(diǎn),連接并延長(zhǎng)交大圓于點(diǎn),連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點(diǎn)是小圓轉(zhuǎn)動(dòng)一定角度后的圓心,且這個(gè)角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動(dòng),圓心轉(zhuǎn)過(guò)角后的位置為點(diǎn),小圓上的點(diǎn),恰好滾動(dòng)到大圓上的也就是此時(shí)的小圓與大圓的切點(diǎn).而在小圓中,圓心角(是小圓與的交點(diǎn))恰好等于,則,而點(diǎn)與點(diǎn)其實(shí)是同一個(gè)點(diǎn)在不同時(shí)刻的位置,則可知點(diǎn)與點(diǎn)是同一個(gè)點(diǎn)在不同時(shí)刻的位置.由于的任意性,可知點(diǎn)的軌跡是大圓水平的這條直徑.類似的可知點(diǎn)的軌跡是大圓豎直的這條直徑.故選A.5、B【解析】由向量平行,先求出的值,再由模長(zhǎng)公式求解模長(zhǎng).【詳解】由,則,即則,所以則故選:B6、B【解析】設(shè),,,,得到,用導(dǎo)數(shù)法求解.【詳解】解:設(shè),,,,則,,,令,則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,時(shí),函數(shù)的最小值為1,故選:B7、A【解析】先由直線方程找到直線的斜率,再推導(dǎo)出直線的傾斜角即可.【詳解】選項(xiàng)A:直線的斜率,則直線傾斜角為,是銳角,判斷正確;選項(xiàng)B:直線的斜率,則直線傾斜角為鈍角,判斷錯(cuò)誤;選項(xiàng)C:直線的斜率,則直線傾斜角為0,不是銳角,判斷錯(cuò)誤;選項(xiàng)D:直線沒(méi)有斜率,傾斜角為直角,不是銳角,判斷錯(cuò)誤.故選:A8、D【解析】根據(jù)含一個(gè)量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D9、C【解析】根據(jù)題意,由為原點(diǎn)到直線上點(diǎn)的距離的平方,再根據(jù)點(diǎn)到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點(diǎn)到直線上點(diǎn)的距離的平方,根據(jù)點(diǎn)到直線垂線段最短,可得,所有的取值范圍為,故選:C.10、C【解析】根據(jù)題意,建立空間直角坐標(biāo)系,求得AC與PQ夾角的余弦值關(guān)于點(diǎn)坐標(biāo)的函數(shù)關(guān)系,求得角度最小時(shí)點(diǎn)的坐標(biāo),即可代值計(jì)算求解結(jié)果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如下所示:設(shè),則,不妨設(shè)點(diǎn)的坐標(biāo)為,則,,則,又,設(shè)直線所成角為,則,則,令,令,則,令,則,此時(shí).故當(dāng)時(shí),取得最大值,此時(shí)最小,點(diǎn),則,故,則故選:C.11、C【解析】由拋物線焦點(diǎn)到準(zhǔn)線的距離為求解即可.【詳解】因?yàn)閽佄锞€焦點(diǎn)到準(zhǔn)線的距離為,故拋物線的焦點(diǎn)到其準(zhǔn)線的距離是2.故選:C【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程中的幾何意義,屬于基礎(chǔ)題型.12、C【解析】根據(jù)等比數(shù)列的性質(zhì)對(duì)四個(gè)命題逐一分析,由此確定正確命題的個(gè)數(shù).【詳解】是等比數(shù)列可得(為定值)①為常數(shù),故①正確②,故②正確③為常數(shù),故③正確④不一定為常數(shù),故④錯(cuò)誤故選C.【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過(guò)作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點(diǎn)在上,設(shè)正方體的棱長(zhǎng)為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過(guò)作平面平面,因?yàn)辄c(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則平面,即在與平面的交線上,連接,因?yàn)榍遥运倪呅问瞧叫兴倪呅?,所以,平面,同理可證平面,所以平面平面,則平面即為,點(diǎn)在線段上,設(shè)正方體的棱長(zhǎng)為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時(shí),取得最小值,最小值為,當(dāng)或時(shí),取得最大值,最大值為故答案為14、3(答案不唯一)【解析】由已知條件結(jié)合等差數(shù)列的性質(zhì)可得,則,從而可寫出數(shù)列的一個(gè)通項(xiàng)公式【詳解】因?yàn)槭堑炔顢?shù)列,且,所以,當(dāng)公差為0時(shí),;公差為1時(shí),;…故答案為:3(答案為唯一)15、或【解析】寫出,,求出,根據(jù)以及即可求解,【詳解】由題意,,,所以,,因?yàn)?,則,即,即,所以,即,解得或(舍).故答案為:16、【解析】由和計(jì)算【詳解】由題意,時(shí),,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析,;(2).【解析】(1)由已知條件,可得為常數(shù),從而得證數(shù)列是等比數(shù)列,進(jìn)而可得數(shù)列的通項(xiàng)公式;(2)由(1)可得,又,所以,所以,利用錯(cuò)位相減法即可求解數(shù)列的前項(xiàng)和.【小問(wèn)1詳解】證明:由題意,因?yàn)?,,,所以,,所以?shù)列是以2為首項(xiàng),3為公比的等比數(shù)列,所以;【小問(wèn)2詳解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.18、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過(guò)點(diǎn)列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問(wèn)1詳解】因?yàn)闄E圓C:的離心率,且過(guò)點(diǎn)所以解得所以橢圓C的方程為【小問(wèn)2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時(shí),設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因?yàn)?,所以,即化?jiǎn)得,且,O到直線l的距離所以,又,此時(shí),所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因?yàn)楫?dāng)k≠0時(shí)當(dāng)且僅當(dāng)即時(shí)取等號(hào)又因?yàn)?,所以,所以?dāng)k=0時(shí),②斜率不存在時(shí),直線與橢圓交于兩點(diǎn)或兩點(diǎn)易知存在圓的方程為⊙O:且綜上,所以【點(diǎn)睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問(wèn)題,需要先設(shè)出變量,表達(dá)出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.19、(1);(2)或.【解析】(1)根據(jù)給定條件結(jié)合拋物線定義求出p即可作答.(2)聯(lián)立直線l與拋物線的方程,用點(diǎn)A,B坐標(biāo)表示出點(diǎn)C,D,M,N的坐標(biāo),列出四邊形CDMN面積的函數(shù)關(guān)系,借助均值不等式計(jì)算得解.【小問(wèn)1詳解】拋物線的準(zhǔn)線:,由拋物線定義得,解得,所以拋物線的方程為.【小問(wèn)2詳解】因?yàn)辄c(diǎn)在上,且,則,即,依題意,,設(shè),,由消去并整理得,則有,,直線PA的斜率是,方程為,令,則,令,則,即點(diǎn)C,點(diǎn)D,同理點(diǎn)M,點(diǎn)N,則,,四邊形的面積有:,當(dāng)且僅當(dāng),即時(shí)取“=”,所以當(dāng)時(shí)四邊形CDMN的面積最小值為4,直線l的方程為或.20、(1);(2)或【解析】(1)設(shè)方程為(,),即得解;(2)由題得,即得解.【詳解】(1)解:由題意,設(shè)方程為(,),,,,,所以雙曲線的標(biāo)準(zhǔn)方程是(2)焦點(diǎn)到準(zhǔn)線的距離是2,,∴當(dāng)焦點(diǎn)在軸上時(shí),拋物線的標(biāo)準(zhǔn)方程為或21、(1)(2)證明見解析,定值為【解析】(1)設(shè)出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系求得.(2)求得過(guò)點(diǎn)的拋物線的切線方程,由此求得兩點(diǎn)的坐標(biāo),通過(guò)化簡(jiǎn)來(lái)證得為定值,并求得定值.【小問(wèn)1詳解】依題意可知直線的斜率不為零,設(shè)直線的方程為,設(shè),,消去并化簡(jiǎn)得,所以,所以.小問(wèn)2詳解】拋物線方程為,焦點(diǎn)坐標(biāo)為,準(zhǔn)線,通徑所在直線,在拋物線上,且,所以過(guò)點(diǎn)的拋物線的切線的斜率存在且不為零,設(shè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年小學(xué)四年級(jí)語(yǔ)文上冊(cè)教學(xué)計(jì)劃
- 2025年月客服個(gè)人工作計(jì)劃
- 2025年暑假計(jì)劃表
- Unit 6單元整體說(shuō)課稿和focus on culture說(shuō)課稿 2024-2025學(xué)年滬教版(2024)七年級(jí)英語(yǔ)上冊(cè)
- 2025幼兒園社區(qū)工作計(jì)劃怎么寫樣本
- 2025年學(xué)期計(jì)劃大學(xué)學(xué)期計(jì)劃大二下學(xué)期
- 輕醫(yī)美抗衰知識(shí)培訓(xùn)課件
- 2025年學(xué)生會(huì)工作計(jì)劃范文怎么寫
- 2025年甜品店創(chuàng)業(yè)計(jì)劃書
- 安全生產(chǎn)責(zé)任制的思考
- RFID電子標(biāo)簽制作方法
- 智能制造企業(yè)數(shù)字化轉(zhuǎn)型建設(shè)方案
- 病理生理學(xué)課件脂代謝紊亂
- 教師幽默朗誦節(jié)目《我愛上班》
- 《細(xì)胞工程學(xué)》考試復(fù)習(xí)題庫(kù)(帶答案)
- 中學(xué)課堂教學(xué)評(píng)價(jià)量表
- 食堂食材配送以及售后服務(wù)方案
- 稱量與天平培訓(xùn)試題及答案
- 塊單項(xiàng)活動(dòng)教學(xué)材料教案丹霞地貌
- 青年人應(yīng)該如何樹立正確的人生觀
- 開封辦公樓頂發(fā)光字制作預(yù)算單
評(píng)論
0/150
提交評(píng)論