版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆上海市高東中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點(diǎn)從點(diǎn)出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.2.在一個數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個常數(shù),那么這個數(shù)列叫做“等和數(shù)列”,這個數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣33.下列說法中正確的是()A.棱柱的側(cè)面可以是三角形B.棱臺的所有側(cè)棱延長后交于一點(diǎn)C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等4.已知過拋物線焦點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為()A. B.2C. D.35.已知命題:,;命題:在中,若,則,則下列命題為真命題的是()A. B.C. D.6.雙曲線的漸近線方程為()A. B.C. D.7.某種疾病的患病率為0.5%,通過驗(yàn)血診斷該病的誤診率為2%,即非患者中有2%的人驗(yàn)血結(jié)果為陽性,患者中有2%的人驗(yàn)血結(jié)果為陰性,隨機(jī)抽取一人進(jìn)行驗(yàn)血,則其驗(yàn)血結(jié)果為陽性的概率為()A.0.0689 B.0.049C.0.0248 D.0.028.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.9.已知直線和互相平行,則實(shí)數(shù)的取值為()A或3 B.C. D.1或10.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.311.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點(diǎn),過F1的直線l交橢圓于M,N兩點(diǎn),若△MF2N的周長為8,則橢圓方程為()A. B.C. D.12.已知直線與直線平行,且直線在軸上的截距比在軸上的截距大,則直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的左、右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn),則以下說法正確的是()A.過點(diǎn)的直線與橢圓交于,兩點(diǎn),則的周長為8B.橢圓上存在點(diǎn),使得C.橢圓的離心率為D.為橢圓上一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為314.已知圓關(guān)于直線對稱,則________15.若,均為正數(shù),且,(1)的最大值為;(2)的最小值為;(3)的最小值為;(4)的最小值為,則結(jié)論正確的是__________16.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn),若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為正方形,,直線垂直于平面分別為的中點(diǎn),直線與相交于點(diǎn).(1)證明:與不垂直;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)若函數(shù)的圖象在處的切線方程為,求的值;(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的最大值.19.(12分)設(shè)橢圓:()的離心率為,橢圓上一點(diǎn)到左右兩個焦點(diǎn)、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值.20.(12分)已知函數(shù)(1)當(dāng)在處取得極值時,求函數(shù)的解析式;(2)當(dāng)?shù)臉O大值不小于時,求的取值范圍21.(12分)如圖1是,,,,分別是邊,上兩點(diǎn),且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.22.(10分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】本題首先可根據(jù)題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達(dá)點(diǎn)的事件,最后根據(jù)古典概型的概率計(jì)算公式即可得出結(jié)果.【詳解】點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達(dá)點(diǎn)的事件有:(下,下,右),故到達(dá)點(diǎn)的概率,故選:B.2、C【解析】利用已知即可求得,再利用已知可得:,問題得解【詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點(diǎn)睛】本題主要考查了新概念知識,考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題3、B【解析】根據(jù)棱柱、棱臺、球、正棱錐結(jié)構(gòu)特征依次判斷選項(xiàng)即可.【詳解】棱柱的側(cè)面都是平行四邊形,A不正確;棱臺是由對應(yīng)的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應(yīng)該為正棱錐的側(cè)棱長都相等,所以D不正確.故選:B.4、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時取得最小值.故選:D.【點(diǎn)睛】本題考察拋物線中的最值問題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.5、C【解析】分別求得的真假性,從而確定正確答案.【詳解】對于,由于,所以為假命題,為真命題.對于,在三角形中,,由正弦定理得,所以為真命題,為假命題.所以為真命題,、、為假命題.故選:C6、B【解析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點(diǎn)睛】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡單的幾何性質(zhì)等知識,屬于基礎(chǔ)題7、C【解析】根據(jù)全概率公式即可求出【詳解】隨機(jī)抽取一人進(jìn)行驗(yàn)血,則其驗(yàn)血結(jié)果為陽性的概率為0.0248故選:C8、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時,為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.9、B【解析】利用兩直線平行的等價條件求得實(shí)數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點(diǎn)睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結(jié)論,可避免討論:已知,,則,10、C【解析】由可得出,利用空間向量數(shù)量積的坐標(biāo)運(yùn)算可得出關(guān)于實(shí)數(shù)的等式,由此可解得實(shí)數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C11、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進(jìn)而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點(diǎn),∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進(jìn)而得b=,所以橢圓方程為.故答案為A【點(diǎn)睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.12、A【解析】分析可知直線不過原點(diǎn),可設(shè)直線的方程為,其中且,利用斜率關(guān)系可求得實(shí)數(shù)的值,化簡可得直線的方程.【詳解】若直線過原點(diǎn),則直線在兩坐標(biāo)軸上的截距相等,不合乎題意,設(shè)直線的方程為,其中且,則直線的斜率為,解得,所以,直線的方程為,即.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、ABD【解析】結(jié)合橢圓定義判斷A選項(xiàng)的正確性,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算判斷B選項(xiàng)的正確性,直接法求得橢圓的離心率,由此判斷C選項(xiàng)的正確性,結(jié)合兩點(diǎn)間距離公式判斷D選項(xiàng)的正確性.【詳解】對于選項(xiàng):由橢圓定義可得:,因此的周長為,所以選項(xiàng)正確;對于選項(xiàng):設(shè),則,且,又,,所以,,因此,解得,,故選項(xiàng)正確;對于選項(xiàng):因?yàn)?,,所以,即,所以離心率,所以選項(xiàng)錯誤;對于選項(xiàng):設(shè),,則點(diǎn)到圓的圓心的距離為,因?yàn)?,所以,所以選項(xiàng)正確,故選:ABD14、1【解析】根據(jù)題意,圓心在直線上,進(jìn)而求得答案.【詳解】由題意,圓心在直線上,則.故答案為:1.15、(1)(2)(4).【解析】利用基本不等式求的最大值可判斷(1);利用“”的妙用以及基本不等式可判斷(2);將所求代數(shù)式轉(zhuǎn)化為關(guān)于的二次函數(shù)結(jié)合由二次函數(shù)的性質(zhì)可得最值判斷C、D,進(jìn)而可得正確答案.【詳解】對于(1):因?yàn)椋鶠檎龜?shù),且,則有,當(dāng)且僅當(dāng)時等號成立,即的最大值為,故(1)正確;對于(2):因?yàn)?,?dāng)且僅當(dāng)時等號成立,即的最小值為,故(2)正確;對于(3):因?yàn)?,所以,在上單調(diào)遞減,無最小值,故(3)不正確;對于(4):,當(dāng)且僅當(dāng)時等號成立,即的最小值為,故(4)正確.故答案為:(1)(2)(4).16、【解析】計(jì)算點(diǎn)漸近線的距離,從而得,由勾股定理計(jì)算,由雙曲線定義列式,從而計(jì)算得,即可計(jì)算出離心率.【詳解】設(shè)雙曲線右焦點(diǎn)為,因?yàn)榈闹悬c(diǎn)在雙曲線的漸近線上,由可知,,因?yàn)闉橹悬c(diǎn),所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點(diǎn)睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,求出點(diǎn)的坐標(biāo),計(jì)算得出,即可證得結(jié)論成立;或利用反證法;(2)利用空間向量法即求.【小問1詳解】方法一:如圖以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、、設(shè),因?yàn)?,,因?yàn)椋?,得,即點(diǎn),因?yàn)?,,所以,故與不垂直方法二:假設(shè)與垂直,又直線平面平面,所以.而與相交,所以平面又平面,從而又已知是正方形,所以與不垂直,這產(chǎn)生矛盾,所以假設(shè)不成立,即與不垂直得證.【小問2詳解】設(shè)平面的法向量為,又,因?yàn)椋?,令,?設(shè)平面的法向量為,因?yàn)?,所以,令,?因?yàn)?顯然二面角為鈍二面角,所以二面角的余弦值是.18、(1);(2).【解析】(1)先對函數(shù)求導(dǎo),再根據(jù)在處的切線斜率可得到參數(shù)的值,然后代入,求出的值,則即可得出;(2)根據(jù)函數(shù)在上是增函數(shù),可得,即恒成立,再進(jìn)行參變分離,構(gòu)造函數(shù),對進(jìn)行求導(dǎo)分析,找出最小值,即實(shí)數(shù)的最大值【詳解】解:(1)由題意,函數(shù).故,則,由題意,知,即.又,則.,即..(2)由題意,可知,即恒成立,恒成立.設(shè),則.令,解得.令,解得.令,解得x.在上單調(diào)遞減,在上單調(diào)遞增,在處取得極小值..,故的最大值為.【點(diǎn)睛】本題主要考查利用某點(diǎn)處的一階導(dǎo)數(shù)分析得出參數(shù)的值,參變量分離方法的應(yīng)用,不等式的計(jì)算能力.本題屬中檔題19、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標(biāo)準(zhǔn)方程;(2)本小題先設(shè)過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點(diǎn)到左右兩個焦點(diǎn)、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè)點(diǎn)、的坐標(biāo)為,,因?yàn)橹本€過點(diǎn),所以可設(shè)直線方程為,聯(lián)立方程,消去可得:,化簡整理得,其中,所以,,因?yàn)?,所以四邊形是平行四邊形,設(shè)平面四邊形的面積為,則,設(shè),則(),所以,因?yàn)?,所以,,所以四邊形面積的最大值為6.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,相交弦等問題,是偏難題.20、(1);(2).【解析】(1)對函數(shù)求導(dǎo),根據(jù)求出m,并驗(yàn)證此時函數(shù)在x=1處取得極值,進(jìn)而求得答案;(2)對函數(shù)求導(dǎo),進(jìn)而求出函數(shù)的單調(diào)區(qū)間和極大值,然后求出m的范圍.【小問1詳解】因?yàn)?,所?因?yàn)樵谔幦〉脴O值,所以,所以,此時,時,,單調(diào)遞減,時,,單調(diào)遞增,即在處取得極小值,故.【小問2詳解】,令,解得.時,,單調(diào)遞增,時,,單調(diào)遞減,時,,單調(diào)遞增.,即的取值范圍是.21、(1)證明見解析(2)【解析】(1)、利用線面垂直的判定,及線面垂直的性質(zhì)即可證明;(2)、建立空間直角坐標(biāo)系,分別求出平面、平面的法向量,利用求出兩平面所成角的余弦值,進(jìn)而求出求二面角的正切值.【小問1詳解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小問2詳解】由(1)知:平面,以為坐標(biāo)原點(diǎn),建
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國連卷平口袋市場調(diào)查研究報告
- 技術(shù)轉(zhuǎn)移與轉(zhuǎn)讓服務(wù)合同
- 軟件需求分析與設(shè)計(jì)服務(wù)合同
- 教育培訓(xùn)項(xiàng)目實(shí)施與監(jiān)管協(xié)議
- 企業(yè)信息化建設(shè)整體解決方案協(xié)議
- 智能醫(yī)療健康平臺開發(fā)合同
- 企業(yè)信息保密合同
- 創(chuàng)新創(chuàng)業(yè)投資合同
- 智能商標(biāo)交易風(fēng)險管理服務(wù)合同
- 后勤承包服務(wù)合同
- 四川省住宅設(shè)計(jì)標(biāo)準(zhǔn)
- 食材配送服務(wù)方案投標(biāo)方案(技術(shù)方案)
- 年產(chǎn)15000噸硫酸鋁項(xiàng)目環(huán)評報告表
- 2024年一級注冊建筑師理論考試題庫ab卷
- 試驗(yàn)檢測方案
- 小學(xué)數(shù)學(xué)班級學(xué)情分析報告
- IMCA船舶隱患排查表
- 2024年軟件開發(fā)調(diào)試合同樣本(二篇)
- 地理月考分析及改進(jìn)措施初中生
- 鄉(xiāng)村籃球比賽預(yù)案設(shè)計(jì)
- 博物館保安服務(wù)投標(biāo)方案(技術(shù)方案)
評論
0/150
提交評論