




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省安慶市達(dá)標(biāo)名校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出命題:若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數(shù)是()A.3 B.2C.1 D.02.曲線在點處的切線方程是()A. B.C. D.3.拋物線的焦點到其準(zhǔn)線的距離是()A.4 B.3C.2 D.14.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或235.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.6.已知雙曲線右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A.2 B.C. D.7.關(guān)于的不等式的解集為,則關(guān)于的不等式的解集為A. B.C. D.8.設(shè)是雙曲線的一個焦點,,是的兩個頂點,上存在一點,使得與以為直徑的圓相切于,且是線段的中點,則的漸近線方程為A. B.C. D.9.設(shè)圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.10.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.11.若實數(shù)x,y滿足不等式組,則的最小值為()A. B.0C. D.212.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或4二、填空題:本題共4小題,每小題5分,共20分。13.已知一個圓錐的底面半徑為6,其體積為則該圓錐的側(cè)面積為________.14.已知等比數(shù)列滿足:,,,則公比______.15.已知圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,則圓心的軌跡方程為______,若點,,則周長的最小值為______16.已知函數(shù),有且只有一個零點,則實數(shù)的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,(1)求,;(2)已知,,試比較,的大小18.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.19.(12分)某校在全體同學(xué)中隨機抽取了100名同學(xué),進(jìn)行體育鍛煉時間的專項調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時間不少于60分鐘的同學(xué)定義為鍛煉達(dá)標(biāo),平均每天體育鍛煉時間少于60分鐘的同學(xué)定義為鍛煉不達(dá)標(biāo)(1)求a的值,并估計該校同學(xué)平均每天體育鍛煉時間的中位數(shù);(2)在樣本中,對平均每天體育鍛煉時間不達(dá)標(biāo)的同學(xué),按分層抽樣的方法抽取6名同學(xué)了解不達(dá)標(biāo)的原因,再從這6名同學(xué)中隨機抽取2名進(jìn)行調(diào)研,求這2名同學(xué)中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率20.(12分)如圖,在四棱錐中,底面滿足,,底面,且,.(1)證明平面;(2)求平面與平面的夾角.21.(12分)已知橢圓的焦點為,且長軸長是焦距的倍(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為1的直線與橢圓相交于兩點,已知點,求面積的最大值22.(10分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結(jié)束的概率;(2)求甲獲勝的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數(shù)的圖象不過第四象限,則函數(shù)是冪函數(shù)是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個命題中,真命題有一個.選C2、B【解析】求導(dǎo),得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B3、C【解析】由拋物線焦點到準(zhǔn)線的距離為求解即可.【詳解】因為拋物線焦點到準(zhǔn)線的距離為,故拋物線的焦點到其準(zhǔn)線的距離是2.故選:C【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程中的幾何意義,屬于基礎(chǔ)題型.4、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標(biāo),根據(jù)雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運算能力,屬于基礎(chǔ)題.5、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.6、B【解析】,得出到漸近線的距離為,由此可得的關(guān)系,從而求得離心率【詳解】因為,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡得故選:B7、B【解析】設(shè),解集為所以二次函數(shù)圖像開口向下,且與交點為,由韋達(dá)定理得所以的解集為,故選B.8、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關(guān)系求解.【詳解】設(shè)另一焦點為,連接,由于是圓的切線,則,且,又是的中點,則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點睛】本題考查雙曲線的簡單的幾何性質(zhì),屬于中檔題.9、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標(biāo)滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A10、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進(jìn)行求解.【詳解】因為直線的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題11、A【解析】畫出可行域,令,則,結(jié)合圖形求出最小值,即可得解;【詳解】解:畫出不等式組,表示的平面區(qū)域如圖陰影部分所示,由,解得,即,令,則.結(jié)合圖形可知當(dāng)過點時,取得最小值,且,即故選:A12、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用體積公式求出圓錐的高,進(jìn)一步求出母線長,最終利用側(cè)面積公式求出答案.【詳解】∵∴∴∴.故答案為:.14、【解析】根據(jù)等比數(shù)列的通項公式可得,結(jié)合即可求出公比.【詳解】設(shè)等比數(shù)列的公式為q,則,即,解得,又,所以,所以.故答案為:.15、①.②.【解析】設(shè),圓半徑為,進(jìn)而根據(jù)題意得,,進(jìn)而得其軌跡方程為雙曲線,再根據(jù)雙曲線的定義,將周長轉(zhuǎn)化為求的最小值,進(jìn)而求解.【詳解】解:如圖1,因為圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,所以,,所以中點,則,,所以,故設(shè),圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點為,,如圖2,連接,由雙曲線的定義得,即,所以周長為,因為,所以周長的最小值為故答案為:;.16、【解析】由題知方程,,有且只有一個零點,進(jìn)而構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性與函數(shù)值得變化情況,作出函數(shù)的大致圖像,數(shù)形結(jié)合求解即可.【詳解】解:因為函數(shù),,有且只有一個零點,所以方程,,有且只有一個零點,令,則,,令,則所以為上的單調(diào)遞減函數(shù),因為,所以當(dāng)時,;當(dāng)時,;所以當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,因為當(dāng)趨近于時,趨近于,當(dāng)趨近于時,趨近于,且,時,,故的圖像大致如圖所示,所以方程,,有且只有一個零點等價于或.所以實數(shù)的取值范圍是故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差,等比數(shù)列的公比,由已知列式計算得解.(2)由(1)的結(jié)論,用等比數(shù)列前n項和公式求出,用裂項相消法求出,再比較大小作答.【小問1詳解】設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,依題意,,整理得:,解得,所以,.【小問2詳解】由(1)知,,數(shù)列是首項為,公比為的等比數(shù)列,則,,,則,用數(shù)學(xué)歸納法證明,,①當(dāng)時,左邊,右邊,左邊>右邊,即原不等式成立,②假設(shè)當(dāng)時,不等式成立,即,則,即時,原不等式成立,綜合①②知,,成立,因此,,即,所以.18、(1)單調(diào)遞增區(qū)間為;單調(diào)減區(qū)間為和;(2);.【解析】(1)求出導(dǎo)函數(shù),令,求出單調(diào)遞增區(qū)間;令,求出單調(diào)遞減區(qū)間.(2)求出函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為和;2由在單調(diào)遞減,在單調(diào)遞增,所以,而,,故最大值是.19、(1),中位數(shù)為64;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結(jié)合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學(xué)的分布情況,再應(yīng)用列舉法求概率.【詳解】(1)由題設(shè),,可得,∴中位數(shù)應(yīng)在之間,令中位數(shù)為,則,解得.∴該校同學(xué)平均每天體育鍛煉時間的中位數(shù)為64.(2)由題設(shè),抽取6名同學(xué)中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機抽取2名的可能情況有共15種,其中至少有一名在內(nèi)的共12種,∴這2名同學(xué)中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率為.20、(1)證明見解析(2)【解析】(1)由已知結(jié)合線面平行判定定理可得;(2)建立空間直角坐標(biāo)系,由向量法可解.【小問1詳解】∵,,∴,又平面,平面,∴平面;【小問2詳解】∵平面且、平面,∴,,又∵,故分別以所在直線為軸,軸、軸,建立如圖空間直角坐標(biāo)系,如圖所示:由,,可得:,,,,,由已知平面,平面,,,,,平面,所以平面,為平面的一個法向量,且;設(shè)為平面的一個法向量,則,,,,,,,令,則,,,設(shè)平面與平面的夾角大小為,,由得:平面與平面的夾角大小為21、(1);(2)1.【解析】(1)根據(jù)給定條件求出橢圓半焦距c,長短半軸長a,b即可得解.(2)設(shè)出直線的方程,再與橢圓C的方程聯(lián)立,求出弦AB長及點P到直線的距離,然后求出面積的表達(dá)式并求其最大值即得.【小問1詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,依題意,半焦距,,即,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】依題意,設(shè)直線,,由消去y并整理得:,由,解得,則有,,于是得,而點到直線的距離為,因此,的面積,當(dāng)且僅當(dāng),即時取“=”,所以面積最大值為1.【點睛】結(jié)論點睛:直線l:y=kx+b上兩點間的距離;直線l:x=my+t上兩點間的距離.22、(1)(2)【解析】(1)設(shè)事件“甲在第次投籃投中”,設(shè)事件“乙在第次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級化學(xué)下冊 第八單元 金屬和金屬材料 課題2 金屬的化學(xué)性質(zhì)第1課時 金屬與氧氣、酸的反應(yīng)教學(xué)設(shè)計(新版)新人教版
- 6 花兒草兒真美麗 教學(xué)設(shè)計-2023-2024學(xué)年道德與法治一年級下冊統(tǒng)編版
- 6 圖形與幾何(教學(xué)設(shè)計)-2024-2025學(xué)年一年級上冊數(shù)學(xué)北師大版2024
- 2023八年級數(shù)學(xué)上冊 第十四章 整式的乘法與因式分解14.3 因式分解14.3.2 公式法第2課時 利用完全平方公式分解因式教學(xué)設(shè)計(新版)新人教版
- 《平行與垂直》教學(xué)設(shè)計-2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- 2024-2025學(xué)年高中英語 Module 6 The Internet and Telecommuniation教學(xué)設(shè)計2 外研版必修1
- 2024秋九年級化學(xué)上冊 第四單元 自然界的水 課題4 化學(xué)式與化合價第3課時 有關(guān)相對分子質(zhì)量的計算教學(xué)設(shè)計(新版)新人教版
- 2024-2025學(xué)年高三語文上學(xué)期第6周《仿用和變換句式(含修辭)》教學(xué)設(shè)計
- 5 《這些事我來做》 (教學(xué)設(shè)計)統(tǒng)編版道德與法治四年級上冊
- 5 蠶出生了教學(xué)設(shè)計+教學(xué)設(shè)計-2024-2025學(xué)年科學(xué)四年級下冊人教鄂教版
- AI在護(hù)理查房中的應(yīng)用
- 2025養(yǎng)殖場租賃合同(合同版本)
- 2025年山西華陽新材料科技集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2024雅安雨城區(qū)中小學(xué)教師招聘考試試題及答案
- 20以內(nèi)三個數(shù)加減混合運算競賽練習(xí)訓(xùn)練題大全附答案
- 2025年鄭州電力職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫匯編
- 2025年公務(wù)員遴選考試公共基礎(chǔ)知識必考題庫170題及答案(三)
- 小學(xué)六年級數(shù)學(xué)計算題100道(含答案)
- B類表(施工單位報審、報驗用表)
- 閥門檢驗記錄表
- 醫(yī)療安全不良事件分析記錄表
評論
0/150
提交評論