版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市市西中2025屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,集合,則()A. B. C. D.2.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.3.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.4.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.55.直角坐標(biāo)系中,雙曲線()與拋物線相交于、兩點(diǎn),若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.6.已知雙曲線的左、右焦點(diǎn)分別為,過(guò)作一條直線與雙曲線右支交于兩點(diǎn),坐標(biāo)原點(diǎn)為,若,則該雙曲線的離心率為()A. B. C. D.7.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知拋物線:,直線與分別相交于點(diǎn),與的準(zhǔn)線相交于點(diǎn),若,則()A.3 B. C. D.9.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.10.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.11.函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.設(shè)集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為且滿足,則數(shù)列的通項(xiàng)_______.14.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.在中,已知是的中點(diǎn),且,點(diǎn)滿足,則的取值范圍是_______.16.如圖,在長(zhǎng)方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線平面EFG,則線段長(zhǎng)度的最小值是________________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)平面中,已知的頂點(diǎn),,為平面內(nèi)的動(dòng)點(diǎn),且.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)過(guò)點(diǎn)且不垂直于軸的直線與交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過(guò)軸上的定點(diǎn).18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.19.(12分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預(yù)計(jì)該產(chǎn)品的每日生產(chǎn)總成本價(jià)格)(單位:萬(wàn)元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本(即生產(chǎn)過(guò)程中一段時(shí)間的總成本對(duì)該段時(shí)間產(chǎn)量的導(dǎo)數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財(cái)團(tuán)每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.20.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.21.(12分)如圖,在矩形中,,,點(diǎn)分別是線段的中點(diǎn),分別將沿折起,沿折起,使得重合于點(diǎn),連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點(diǎn).求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.【點(diǎn)睛】考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.2、B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.3、B【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價(jià)為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,是難題.4、D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點(diǎn)睛】本題考查了線性回歸方程過(guò)樣本中心點(diǎn)的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線得到坐標(biāo)為,再將點(diǎn)代入雙曲線得到離心率.【詳解】因?yàn)槿切蜲AB是等邊三角形,設(shè)直線OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線得到故答案為:D.【點(diǎn)睛】求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).6、B【解析】
由題可知,,再結(jié)合雙曲線第一定義,可得,對(duì)有,即,解得,再對(duì),由勾股定理可得,化簡(jiǎn)即可求解【詳解】如圖,因?yàn)?,所?因?yàn)樗?在中,,即,得,則.在中,由得.故選:B【點(diǎn)睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應(yīng)用,屬于中檔題7、A【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡(jiǎn),求得對(duì)應(yīng)的坐標(biāo),由此判斷對(duì)應(yīng)點(diǎn)所在象限.【詳解】,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)所在象限,屬于基礎(chǔ)題.8、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過(guò)拋物線的焦點(diǎn)如圖,過(guò)A,M作準(zhǔn)線的垂直,垂足分別為C,D,過(guò)M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點(diǎn)睛】本題考查求拋物線的焦點(diǎn)弦的斜率,常見(jiàn)于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.9、C【解析】
先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時(shí),由,得,解得,此時(shí);②當(dāng)時(shí),由,得.所以,不等式的解集為.下面來(lái)求函數(shù)的值域.當(dāng)時(shí),,則,此時(shí);當(dāng)時(shí),,此時(shí).綜上所述,函數(shù)的值域?yàn)?,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時(shí)也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.10、C【解析】
由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.11、B【解析】
對(duì)分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對(duì)勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點(diǎn)睛】本題考查函數(shù)單調(diào)性,熟練掌握簡(jiǎn)單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.12、C【解析】
解對(duì)數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對(duì)數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求得時(shí);再由可得時(shí),兩式作差可得,進(jìn)而求解.【詳解】當(dāng)時(shí),,解得;由,可知當(dāng)時(shí),,兩式相減,得,即,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以,故答案為:【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查等比數(shù)列的通項(xiàng)公式的應(yīng)用.14、3【解析】
雙曲線的焦點(diǎn)在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因?yàn)殡p曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點(diǎn)睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點(diǎn)位置,寫(xiě)出雙曲線的漸近線方程的對(duì)應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】
由中點(diǎn)公式的向量形式可得,即有,設(shè),有,再分別討論三點(diǎn)共線和不共線時(shí)的情況,找到的關(guān)系,即可根據(jù)函數(shù)知識(shí)求出范圍.【詳解】是的中點(diǎn),∴,即設(shè),于是(1)當(dāng)共線時(shí),因?yàn)?,①若點(diǎn)在之間,則,此時(shí),;②若點(diǎn)在的延長(zhǎng)線上,則,此時(shí),.(2)當(dāng)不共線時(shí),根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【點(diǎn)睛】本題主要考查學(xué)中點(diǎn)公式的向量形式和數(shù)量積的定義的應(yīng)用,以及余弦定理的應(yīng)用,涉及到函數(shù)思想和分類討論思想的應(yīng)用,解題關(guān)鍵是建立函數(shù)關(guān)系式,屬于中檔題.16、【解析】
如圖,連接,證明平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.當(dāng)時(shí).線段的長(zhǎng)度最小,再求此時(shí)的得解.【詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)?,所以同理得平面,?所以平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.在中,,故當(dāng)時(shí).線段的長(zhǎng)度最小,最小值為.故答案為:【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)();(2)證明見(jiàn)解析.【解析】
(1)設(shè)點(diǎn),分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡(jiǎn)即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點(diǎn),,,表示出直線,取,得,即可證明直線過(guò)軸上的定點(diǎn).【詳解】(1)設(shè),由已知,∴,∴(),化簡(jiǎn)得點(diǎn)的軌跡的方程為:();(2)由(1)知,過(guò)點(diǎn)的直線的斜率為0時(shí)與無(wú)交點(diǎn),不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過(guò)軸上的定點(diǎn).【點(diǎn)睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點(diǎn)問(wèn)題,考查學(xué)生的計(jì)算能力,屬于中檔題.18、(1)見(jiàn)解析(2)【解析】
(1)先求導(dǎo),再對(duì)m分類討論,求出的單調(diào)性;(2)對(duì)m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,則.則不合題意當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.則,即又因?yàn)閱握{(diào)遞增,且,故綜上,【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.19、(1);(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.【解析】
(1)求得函數(shù)的導(dǎo)函數(shù),由此求得求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本.(2)將所要證明不等式轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得不等式成立.(3)利用(2)的結(jié)論,判斷出,由此結(jié)合對(duì)數(shù)運(yùn)算,證得.【詳解】(1)因?yàn)樗援?dāng)時(shí),(2)要證,只需證,即證,設(shè)則所以在上單調(diào)遞減,所以所以,即;(3)因?yàn)橛钟桑?)知,當(dāng)時(shí),所以所以所以【點(diǎn)睛】本小題主要考查導(dǎo)數(shù)的計(jì)算,考查利用導(dǎo)數(shù)證明不等式,考查放縮法證明數(shù)列不等式,屬于難題.20、(1)證明見(jiàn)解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據(jù)0<xy<1時(shí),即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當(dāng)且僅當(dāng)x=y(tǒng)=z時(shí)取等號(hào).又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當(dāng)且僅當(dāng)x=y(tǒng)=z=1時(shí)取等號(hào),∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點(diǎn)睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬中檔題.21、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過(guò)作于,則可證平面,故為所求角,在中利用余弦定理計(jì)算,再計(jì)算.【詳解】解:(Ⅰ)因?yàn)?,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過(guò)作于,則由平面,且平面知,所以平面,從而是直線與平面所成
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品工廠機(jī)械與設(shè)備模擬習(xí)題與參考答案
- 養(yǎng)老院老人失智癥預(yù)防與照料制度
- 養(yǎng)老院老人緊急救援人員表彰制度
- 質(zhì)量管理體系建設(shè)方案
- 《日本明治維新》課件
- 2024年某出版公司與用戶關(guān)于圖書(shū)租賃的合同
- 房屋拆遷繼承分割協(xié)議書(shū)(2篇)
- 2024年版城市綠化項(xiàng)目合作合同
- 《QC小組活動(dòng)講解》課件
- 2024年新媒體運(yùn)營(yíng)總監(jiān)職位聘用協(xié)議范本3篇
- GB/T 18277-2000公路收費(fèi)制式
- 2023年住院醫(yī)師規(guī)范化培訓(xùn)胸外科出科考試
- 11468工作崗位研究原理與應(yīng)用第7章
- 2023實(shí)施《中華人民共和國(guó)野生動(dòng)物保護(hù)法》全文學(xué)習(xí)PPT課件(帶內(nèi)容)
- 2022年初級(jí)育嬰師考試題庫(kù)附答案
- 系統(tǒng)家庭療法課件
- 新版GSP《醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范》培訓(xùn)試題
- 初中道德與法治答題技巧課件
- 管理學(xué)專業(yè):管理基礎(chǔ)知識(shí)試題庫(kù)(附含答案)
- 河北省保定市藥品零售藥店企業(yè)藥房名單目錄
- 廣西基本醫(yī)療保險(xiǎn)門診特殊慢性病申報(bào)表
評(píng)論
0/150
提交評(píng)論