2025屆湖北省咸寧市高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第1頁
2025屆湖北省咸寧市高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第2頁
2025屆湖北省咸寧市高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第3頁
2025屆湖北省咸寧市高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第4頁
2025屆湖北省咸寧市高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省咸寧市高二數(shù)學第一學期期末教學質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓及以下3個函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有()A.0個 B.1個C.2個 D.3個2.已知函數(shù),的導函數(shù),的圖象如圖所示,則的極值情況為()A.2個極大值,1個極小值 B.1個極大值,1個極小值C.1個極大值,2個極小值 D.1個極大值,無極小值3.圓關于直線對稱圓的標準方程是()A. B.C. D.4.已知F1(-5,0),F(xiàn)2(5,0),動點P滿足|PF1|-|PF2|=2a,當a為3和5時,點P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線5.已知直線l經(jīng)過,兩點,則直線l的傾斜角是()A.30° B.60°C.120° D.150°6.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.7.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.8.在數(shù)列中,,,,則()A.2 B.C. D.19.變量,滿足約束條件則的最小值為()A. B.C. D.510.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.11.已知函數(shù)的導函數(shù)為,且滿足,則()A. B.C. D.12.圓的圓心到直線的距離為2,則()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足0,,則數(shù)列的通項公式為____,則數(shù)列的前項和______14.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖).給出下列三個結論:其中,所有正確結論的序號是____________①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到原點的距離都不超過;③曲線C所圍城的“心形”區(qū)域的面積小于315.函數(shù)滿足,且,則的最小值為___________.16.已知正三角形邊長為a,則該三角形內任一點到三邊的距離之和為定值.類比上述結論,在棱長為a的正四面體內,任一點到其四個面的距離之和為定值_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)拋物線的焦點為F,過點F的直線交拋物線于A,B兩點(1)若,求直線AB的斜率;(2)設點M在線段AB上運動,原點O關于點M的對稱點為C,求四邊形OACB面積的最小值18.(12分)已知動點M到定點和的距離之和為4(1)求動點軌跡的方程;(2)若直線交橢圓于兩個不同的點A,B,O是坐標原點,求的面積19.(12分)已知橢圓的兩焦點為、,P為橢圓上一點,且(1)求此橢圓的方程;(2)若點P在第二象限,,求的面積20.(12分)圓心為的圓經(jīng)過點,,且圓心在上,(1)求圓的標準方程;(2)過點作直線交圓于且,求直線的方程.21.(12分)某公司有員工人,對他們進行年齡和學歷情況調查,其結果如下:現(xiàn)從這名員工中隨機抽取一人,設“抽取的人具有本科學歷”,“抽取的人年齡在歲以下”,試求:(1);(2);(3).22.(10分)已知雙曲線的左、右焦點分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由橢圓的幾何性質可得橢圓的圖像關于原點對稱,因為函數(shù),函數(shù)為奇函數(shù),其圖像關于原點對稱,則①②滿足題意,對于函數(shù)在軸右側時,,只有時,,即函數(shù)在軸右側的圖像顯然不能等分橢圓在軸右側的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側的圖像顯然也不能等分橢圓在軸左側的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,得解.【詳解】解:因為橢圓的圖像關于原點對稱,對于①,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于②,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于③,對于函數(shù)在軸右側時,,只有時,,即函數(shù)在軸右側的圖像(如圖)顯然不能等分橢圓在軸右側的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側的圖像顯然也不能等分橢圓在軸左側的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,即函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有2個,故選C.【點睛】本題考查了橢圓的幾何性質、函數(shù)的奇偶性及函數(shù)的對稱性,重點考查了函數(shù)的性質,屬基礎題.2、B【解析】根據(jù)圖象判斷的正負,再根據(jù)極值的定義分析判斷即可【詳解】由,得,令,由圖可知的三個根即為與的交點的橫坐標,當時,,當時,,即,所以為的極大值點,為的極大值,當時,,即,所以為的極小值點,為的極小值,故選:B3、D【解析】先根據(jù)圓的標準方程得到圓的圓心和半徑,求出圓心關于直線的對稱點,進而寫出圓的標準方程.【詳解】因為圓的圓心為,半徑為,且關于直線對稱的點為,所以所求圓的圓心為、半徑為,即所求圓的標準方程為.故選:D.4、D【解析】由雙曲線定義結合參數(shù)a的取值分類討論而得.【詳解】依題意得,當時,,且,點P的軌跡為雙曲線的右支;當時,,故點P的軌跡為一條射線.故選D.故選:D5、C【解析】設直線l的傾斜角為,由題意可得直線l的斜率,即,∵,∴直線l的傾斜角為,故選:.6、D【解析】由向量線性運算得,利用數(shù)量積的定義和運算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.7、C【解析】設等比數(shù)列的公比為,可得出,即可得解.【詳解】設等比數(shù)列的公比為,可得出.故選:C.8、A【解析】根據(jù)題中條件,逐項計算,即可得出結果.【詳解】因為,,,所以,因此.故選:A.9、A【解析】根據(jù)不等式組,作出可行域,數(shù)形結合即可求z的最小值.【詳解】根據(jù)不等式組作出可行域如圖,,則直線過A(-1,0)時,z取最小值.故選:A.10、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A11、C【解析】求出導數(shù)后,把x=e代入,即可求解.【詳解】因為,所以,解得故選:C12、B【解析】配方求出圓心坐標,再由點到直線距離公式計算【詳解】圓的標準方程是,圓心為,∴,解得故選:B.【點睛】本題考查圓的標準方程,考查點到直線距離公式,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】第一空:先構造等比數(shù)列求出,即可求出的通項公式;第二空:先求出,令,通過錯位相減求出的前項和為,再結合等差數(shù)列的求和公式及分組求和即可求解.【詳解】第一空:由可得,又,則是以1為首項,2為公比的等比數(shù)列,則,則;第二空:,設,前項和為,則,,兩式相減得,則,又,則.故答案為:;.14、①②【解析】根據(jù)題意,先判斷曲線關于軸對稱,由基本不等式的性質對方程變形,得到,可判定①正確;當時,,得到曲線右側部分的點到原點的距離都不超過,再根據(jù)曲線的對稱性,可判定②正確;由軸的上方,圖形的面積大于四點圍成的矩形的面積,在軸的下方,圖形的面積大于三點圍成的三角形的面積,可判斷③不正確.【詳解】根據(jù)題意,曲線,用替換曲線方程中的,方程不變,所以曲線關于軸對稱,對于①中,當時,,即為,可得,所以曲線經(jīng)過點,再根據(jù)對稱性可知,曲線還經(jīng)過點,故曲線恰好經(jīng)過6個整點,所以①正確;對于②中,由①可知,當時,,即曲線右側部分的點到原點的距離都不超過,再根據(jù)曲線的對稱性可知,曲線上任意一點到原點的距離都不超過,所以②正確;對于③中,因為在軸的上方,圖形的面積大于四點圍成的矩形的面積,在軸的下方,圖形的面積大于三點圍成的三角形的面積,所以曲線所圍城的“心形”區(qū)域的面積大于3,所以③不正確.故選:①②15、6【解析】化簡得出,由化簡后根據(jù)均值不等式建立不等式,求解二次不等式即可得解.【詳解】,由得:,(當且僅當時取等號),所以的最小值為6.故答案為:616、【解析】利用正四面體內任一點可將正四面體分成四個小四面體,令它們的高分別為,由體積相等即可求得;【詳解】正三角形邊長為a,則該三角形內任一點到三邊的距離分別為,即有:,解得同理,棱長為a的正四面體內,任一點到其四個面的距離分別為,即有:,解得故答案為:【點睛】本題考查了利用空間幾何體的等體積法求高的和為定值,屬于簡單題;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)面積最小值是4【解析】本題主要考查拋物線的標準方程及其幾何性質、直線與圓錐曲線的位置關系、直線的斜率等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,依題意F(1,0),設直線AB的方程為.將直線AB的方程與拋物線的方程聯(lián)立,得,由此能夠求出直線AB的斜率;第二問,由點C與原點O關于點M對稱,得M是線段OC的中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于,由此能求出四邊形OACB的面積的最小值試題解析:(1)依題意知F(1,0),設直線AB方程為.將直線AB的方程與拋物線的方程聯(lián)立,消去x得.設,,所以,.①因為,所以.②聯(lián)立①和②,消去,得所以直線AB的斜率是(2)由點C與原點O關于點M對稱,得M是線段OC中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于因為,所以當m=0時,四邊形OACB的面積最小,最小值是4考點:拋物線的標準方程及其幾何性質、直線與圓錐曲線的位置關系、直線的斜率18、(1);(2).【解析】(1)利用橢圓的定義即求;(2)由直線方程與橢圓方程聯(lián)立,可解得點,再利用三角形面積公式即求.【小問1詳解】∵動點M到定點和的距離之和為4,∴動點M的軌跡是以和為焦點的橢圓,可設方程為,則,故動點軌跡的方程為;【小問2詳解】由可得,∴或,∴,又O是坐標原點,∴的面積為.19、(1);(2).【解析】(1)由題可得,根據(jù)橢圓的定義,求得,進而求得的值,即可求解;(2)由題可得直線方程為,聯(lián)立橢圓方程可得點P,利用三角形的面積公式,即求.【小問1詳解】設橢圓的標準方程為,焦距為,由題可得,,所以,可得,即,則,所以橢圓的標準方程為【小問2詳解】設點坐標為,,,∵,∴所在的直線方程為,則解方程組,可得,∴.20、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點坐標即為圓心坐標,再求得半徑后可得圓的標準方程;(2)檢驗直線斜率不存在時是否滿足題意,在斜率存在時設方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點坐標為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標準方程(2)由可得圓心到直線的距離當直線斜率不存在時,其方程為,當直線斜率存在時,設其方程為,則,解得,此時其方程為,所以直線方程為或.【點睛】方法點睛:本題考查求圓的標準方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時注意檢驗直線斜率不存在的情形21、(1);(2);(3).【解析】(1)利用古典概型的概率公式可求得;(2)利用古典概型的概率公式和對立事件的概率公式可求得;(3)利用古典概型的概率公式可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論