四川省峨眉山市第七教育發(fā)展聯(lián)盟高2025屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟高2025屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟高2025屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟高2025屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
四川省峨眉山市第七教育發(fā)展聯(lián)盟高2025屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省峨眉山市第七教育發(fā)展聯(lián)盟高2025屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過點,,則該直線的傾斜角是()A. B.C. D.2.設(shè)、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.3.圓與的公共弦長為()A. B.C. D.4.已知函數(shù),當時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.5.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.6.函數(shù)的導(dǎo)函數(shù)為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調(diào)遞增C.一定有最小值 D.不等式一定有解7.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.8.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.110.不等式的解集為()A. B.C. D.11.如圖,在長方體中,,,則直線和夾角的余弦值為()A. B.C. D.12.若數(shù)列滿足,則的值為()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,求_____________.14.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標準方程為________15.如圖,某海輪以的速度航行,若海輪在點測得海面上油井在南偏東,向北航行后到達點,測得油井在南偏東,海輪改為沿北偏東的航向再行駛到達點,則,間的距離是________16.已知直線,拋物線上一動點到直線l的距離為d,則的最小值是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由18.(12分)已知函數(shù)(1)當時,求函數(shù)的單調(diào)區(qū)間;(2)設(shè),,求證:;(3)當時,恒成立,求的取值范圍19.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和20.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值21.(12分)在銳角中,角的對邊分別為,滿足.(1)求;(2)若的面積為,求的值.22.(10分)某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,出現(xiàn)故障時需1名工人進行維修,且每臺機器是否出現(xiàn)故障是相互獨立的,每臺機器出現(xiàn)故障的概率為(1)若出現(xiàn)故障的機器臺數(shù)為X,求X的分布列;(2)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時維修,都產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤.若該廠在雇傭維修工人時,要保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%,雇傭幾名工人使該廠每月獲利最大?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C2、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因為,則,由勾股定理得,即,整理得,故.故選:A.3、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計算圓心到直線的距離,再結(jié)合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.4、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃5、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B6、C【解析】根據(jù)圖象可得的符號,從而可得的單調(diào)區(qū)間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當時,,當時,,當時,,當時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數(shù),故C正確,D錯誤.故選:C.7、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運用.8、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點的坐標為,有,由圓的圓心坐標為,是拋物線的焦點坐標,有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.9、B【解析】計算后,根據(jù)判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.10、A【解析】根據(jù)一元二次不等式的解法進行求解即可.【詳解】,故選:A.11、D【解析】如圖建立空間直角坐標系,分別求出的坐標,由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.12、C【解析】通過列舉得到數(shù)列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的定義即可求解.【詳解】,所以,故答案為:.14、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點的位置寫出雙曲線標準方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標準方程為.故答案為:.15、【解析】根據(jù)條件先由正弦定理求出的長,得出,求出的長,由勾股定理可得答案.【詳解】海輪向北航行后到達點,則由題意,在中,又則,由正弦定理可得:,即在中,,所以故答案為:16、##【解析】作直線l,拋物線準線且交y軸于A點,根據(jù)拋物線定義有,進而判斷目標式最小時的位置關(guān)系,結(jié)合點線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準線且交y軸于A點,則,,由拋物線定義知:,則,所以,要使目標式最小,即最小,當共線時,又,此時.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;.【解析】(1)根據(jù)給定條件求出a,c,b即可作答.(2)聯(lián)立直線l與橢圓C的方程,利用斜率坐標公式并結(jié)合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設(shè)直線l方程為,由消去x并整理得,設(shè),,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1)函數(shù)單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞)(2)證明見解析(3)[1,+∞)【解析】(1)對函數(shù)求導(dǎo)后,由導(dǎo)數(shù)的正負可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)可得,令,則可得,然后利用累加法可證得結(jié)論,(3)由,故,然后分和討論的最大值與比較可得結(jié)果【小問1詳解】當時,(),則,由,解得;由,解得,因此函數(shù)單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞)【小問2詳解】由(1)知,當k=1時,,故令,則,即,所以【小問3詳解】由,故當時,因為,所以,因此恒成立,且的根至多一個,故在(0,1]上單調(diào)遞增,所以恒成立當時,令,解得當時,,則單調(diào)遞增;當時,,則單調(diào)遞減;于是,與恒成立相矛盾綜上,的取值范圍為[1,+∞)【點睛】關(guān)鍵點點睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū),利用導(dǎo)數(shù)求函數(shù)的最值,利用導(dǎo)數(shù)證明不等式,第(2)問解題的關(guān)鍵是利用(1)可得,從而得,然后令,得,最后累加可證得結(jié)論,考查數(shù)轉(zhuǎn)化思想,屬于較難題19、(1);(2)【解析】(1)由等差數(shù)列以及等比中項的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項公式為;(2)由(1)得,,所以【點睛】關(guān)于數(shù)列前項和的求和方法:分組求和法:兩個數(shù)列等差或者等比數(shù)列相加時利用分組求和法計算;裂項相加法:數(shù)列的通項公式為分式時可考慮裂項相消法求和;錯位相減法:等差乘以等比數(shù)列的情況利用錯位相減法求和.20、(1)詳見解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結(jié),,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結(jié),因為,,點為的中點,所以,則兩兩垂直,以點為坐標原點,建立空間直角坐標系,如圖所示:則,,,所以,,,,,,所以,,,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,所以,因為二面角為銳二面角,所以二面角的余弦值為.21、(1);(2).【解析】(1)由條件可得,即,從而可得答案.(2)由條件結(jié)合三角形的面積公式可得,再由余弦定理得,配方可得答案.【詳解】(1)因為,所以,所以所以,因為所以,因為,所以(2)由面積公式得,于是,由余弦定理得,即,整理得,故.22、(1)答案見解析(2)雇傭3名【解析】(1)設(shè)出現(xiàn)故障的機器臺數(shù)為X,由題意知,即可由二項分布求解;(2)設(shè)該廠雇傭n名工人,n可取0、1、2、3、4,先求出保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%需要至少3人,再分別計算3人,4人時的獲利即可得解.【小問1詳解】每臺機器運行是否出現(xiàn)故障看作一次實驗,在一次試驗中,機器出現(xiàn)故障的概率為,4臺機器相當于4次獨立試驗設(shè)出現(xiàn)故障的機器臺數(shù)為X,則,,,,,,則X的分布列為:X01234P【小問2詳解】設(shè)該廠雇傭n名工人,n可取0、1、2、3、4,設(shè)“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論