版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10908
IdentificationofanExpandedInventory
ofGreenJobTitlesthroughAI-DrivenTextMining
Micha?PalińskiGüne?A??k
TomaszGajderowicz
MaciejJakubowski
Ef?anNas?zen
DhushyanthRaju
WORLDBANKGROUP
SocialProtectionandJobsGlobalPracticeSeptember2024
PolicyResearchWorkingPaper10908
Abstract
Thisstudyexpandstheinventoryofgreenjobtitlesbyincorporatingaglobalperspectiveandusingcontemporarysources.Itleveragesnaturallanguageprocessing,specificallyaretrieval-augmentedgenerationmodel,toidentifygreenjobtitles.Theprocessbeganwithasearchofacademicliter-aturepublishedafter2008usingtheofficialAPIsofScopusandWebofScience.Thesearchyielded1,067articles,fromwhich695uniquepotentialgreenjobtitleswereidenti-fied.Theretrieval-augmentedgenerationmodelusedtheadvancedtextanalysiscapabilitiesofGenerativePre-trained
Transformer4,providingareproduciblemethodtocatego-rizejobswithinvariousgreeneconomysectors.Theresearchclusteredthesejobtitlesinto25distinctsectors.Thiscatego-rizationalignscloselywithestablishedframeworks,suchastheU.S.DepartmentofLabor’sOccupationalInformationNetwork,andsuggestspotentialnewcategorieslikegreenhumanresources.Thefindingsdemonstratetheefficacyofadvancednaturallanguageprocessingmodelsinidentifyingemerginggreenjobroles,contributingsignificantlytotheongoingdiscourseonthegreeneconomytransition.
ThispaperisaproductoftheSocialProtectionandJobsGlobalPractice.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmaybe
contactedatsnasozen@anddraju2@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
IdentificationofanExpandedInventoryofGreenJobTitlesthroughAI-DrivenTextMining
Micha?Paliński
Güne?A??k
TomaszGajderowicz
MaciejJakubowski
Ef?anNas?zen
DhushyanthRaju
Keywords:AI,textmining,occupationalclassification,greenjobs,greeneconomyJELcodes:J23,Q52,O14
Paliński:UniversityofWarsaw,Warsaw,m.palinski@.pl.
A??k:TOBBUniversityofEconomicsandTechnology,Ankara,gunesasik@.
Gajderowicz:UniversityofWarsaw,Warsaw,tgajderowicz@.pl.
Jakubowski:UniversityofWarsaw,Warsaw,mjakubowski@.pl.
Nas?zen:WorldBank,Ankara,snasozen@.
Raju:WorldBank,Washington,DC,draju2@.
WethankBerfu?opurforresearchassistancewiththeliteraturesearch.WearealsogratefultoBurakBask?n,PaoloBelli,AhmetKurnaz,RenéLeónSolano,andAivinVicquierraSolatorioforusefulcomments.
2
1.Introduction
Theescalatingimpactsofclimatechangeunderscoretheurgencyofagreentransition—apivotalshifttowardsustainablepracticesthatisessentialforourplanet’sfuture.Thistransitionisexpectedtoacceleraterapidly,necessitatingthatpolicymakersanalyzeitsimpactsonnationallabormarketsanddevelopeffectivestrategiestonavigatetheevolvinglandscape.Understandingthescopeandnatureofgreenjobsiscrucialforinformingpublicpolicy,enablinggovernmentsandorganizationstodeveloptailoredandtargetedstrategiesforeducation,training,andemploymenttosupportasustainableeconomy.
Worldwide,themostwidelyusedsourceofgreenjobtitlesistheGreenOccupationslist,constructedbytheU.S.DepartmentofLabor’sOccupationalInformationNetwork(O*NET)in2009(Dierdorffetal.2009).O*NET’soriginalapproachinvolvedreviewingpublicationscoveringawidearrayofworkplacetopicspertinenttothegreeneconomy.Inassessinggreenjobs,researchpredominantlyemploystwomethods:top-downapproaches,whichcategorizeentiresectorsorindustriesasgreen,andbottom-upapproaches,whichfocusonspecificoccupations,defininggreenjobsbasedonthegreennatureofthetasksorskillsassociatedwiththoseroles(Valeroetal.2021).O*NET’sclassificationisthemostoftenusedsourceforoccupationretrievalinthebottom-upapproachtogreenjobsanalysis(OECD2023).
ThegreenjobtaxonomydevelopedbyO*NEThasbeeninstrumentalinshapingquantitativeresearchonthegreeneconomy.IntheUnitedStates,itsimpactisreflectedinstudiesbyresearcherssuchasConsolietal.(2016),Poppetal.(2020),Vona,Marin,andConsoli(2019),andVonaetal.(2018).Thetaxonomyhasalsobeenadaptedforvariousregions,includingtheEuropeanUnion(BowenandHancké2019),theNetherlands(Elliottetal.2021),theUnitedKingdom(Valeroetal.2021),OrganisationforEconomicCooperationandDevelopment(OECD)membercountries(OECD2023),VietNam(Doanetal.2023),andArgentina(delaVega,Porto,andCerimelo2024).Afterclassifyingoccupationsasgreen,studiesdelveintothespecificskillsandtasksrequiredforgreenjobs,analyzetrendsingreenjobcreationanddistribution,andassessthebroadereconomicimpacts,suchasproductivity,innovation,andgrowth,associatedwiththegreentransition.
However,twomainissuesmakeO*NETlessrelevantforworldwideuse,particularlyforgreenjobs.First,O*NETwasbuiltin2009,withthelastmajorrevisionofthetaxonomycompletedin2011(Dierdorffetal.2011)andtheassociatedreferencebooklastupdatedin2013(O*NET2013).Theliteratureongreenjobshasexpandedsignificantlysince2009.Second,O*NETisdesignedfortheU.S.labormarket,identifyingtaskswithinoccupationsbasedontheU.S.context.Thetasksandskillsrequiredtoperformthesejobsdependontheproductiontechnology,whichcandiffersignificantlybetweentheUnitedStatesandothereconomies,suchaslow-andmiddle-incomecountries.
Ourstudyaimstoexpandtheinventoryofgreenjobtitlesbyintegratingaglobalperspectiveandincorporatingcontemporarysources.Ourliteraturereviewcomprisedasearchforarticlespublishedafter2008usingScopusandWebofScience—twoleadingbibliographicdatabasesthatarewidelyusedbytheacademiccommunityforaccessinganextensiveglobalcollectionofpeer-reviewedpublicationsacrossvariousdisciplines(ZhuandLiu2020).Theyear2008markeda
3
criticaljunctureinthedialogueongreenjobs,withthefirstexplicitdefinitionoftheconcept(Stanef-Puic?etal.2022).
TheconstructionofataxonomylikeO*NETtypicallyinvolvesqualitativecodingtoidentifyjobtitleswithinagreencontext,amethodthatislabor-intensiveandtime-consuming.However,thereisagrowingtrendtowardusingnaturallanguageprocessing(NLP),oftenaugmentedbyexpertreview,asapotenttoolforjobidentificationandcategorizationacrossvariouscontexts,includingthegreeneconomy(Chiarelloetal.2021;Decorteetal.2021;Li,Sunetal.2020;Papoutsoglouetal.2022).Asignificantexampleisthe2022initiativebytheEuropeanCommission,whichemployedtheBidirectionalEncoderRepresentationsfromTransformers(BERT)NLPalgorithmalongsidemanuallabelingtoidentifygreenconcepts(skillsandknowledge)withintheEuropeanSkills,Competences,Qualifications,andOccupationsclassification(EC2022).
AlignedwiththisNLP-drivenmethodologicalevolution,ourresearchutilizedanadvancedartificialintelligence(AI)pipeline,specificallytheretrieval-augmentedgeneration(RAG)model(Lewisetal.2020),toidentifygreenjobtitlesinacademicliterature.Thistechnologyenabledtheexaminationofasubstantiallylargersetofliteraturethanmanualmethodscouldaccommodate.RAGstandsoutasaneffectiveNLPapproach,mergingthebenefitsofretrieval-andgenerative-basedAImodels,therebyaddressingprevalentissuesinbasicgenerativeAI,suchashallucinationsandthelackofdomain-specificknowledge(Gaoetal.2023).Importantly,ourapproachisreproducible,allowingthelistofgreenjobstobeupdatedastheliteratureonthegreentransitionexpandsinthefuture.
OursearchoftheacademicliteraturepublishedbetweenJanuary2009andApril2024,whenweconductedthesearch,ultimatelyyielded1,067articlesforanalysis.Wefoundthattheacademicliteratureonthegreentransitionhassignificantlyexpandedoverthepast15years,bothinthenumberofarticlesandinthediversityofrepresentedcountriesandregions.In2009,therewereonly44articlesonthegreentransition.By2023,thisnumberhadincreasedto162.In2009,articlesalmostexclusivelycoveredtheUnitedStates,Canada,China,andcountriesintheEuropeanUnion.By2023,thecoveragehadexpandedtoincludeEurope,theCaucasus,SoutheastAsia,andAfrica.
Weidentified695uniquegreenjobtitlesfrom105articles(10percentofthe1,067articles).ComparingourlistofgreenjobswiththoseidentifiedinO*NET,wefoundthat17percentofthejobtitlesmatchedperfectlyoralmostperfectlywithO*NET,whilewealsoidentifiedpotentiallynewtitlesthroughlessprecisematches.
OurstudydemonstratesthatAI-basedmodelscanaddresscapacitychallengesinidentifyingqualitativeinformationfromalargeandexpandingbodyofliterature,despitesomelimitations.FutureresearchandpracticeshouldfocusonrefiningtheseAI-drivenmethodsandintegratingadditionalinformationsourcestocontinuouslyupdateandexpandtheinventoryofgreenjobtitlesastheliteratureonthegreentransitionevolves.
4
2.Approach
IdentificationofRelevantLiterature
InApril2024,weconductedasearchoftheliteraturepublishedsinceJanuary2009,usingtheofficialapplicationprogramminginterfacesofScopusandWebofScience.Oursearchstrategyinvolvedkeywordcombinationspreviouslyvalidatedinthreesystematicliteraturereviewsrelatedtogreenjobs(ApostelandBarslund2024;KozarandSulich2023;Stanef-Puic?etal.2022).Thekeywordcombinationsincluded“greenjob(s),”“greenoccupation(s),”“greenemployment,”“sustainablejob(s),”“sustainableoccupation(s),”“greentransitionjob(s),”and“green-collarjob(s).”(Box1liststhesearchqueries.)Thesekeywordsweresearchedwithintitles,abstracts,authorkeywords,and“topics”asreferencedinthedatabases.Toensurecredibleresults,werestrictedourfocustopeer-reviewedpublications,specificallyarticlesandreviews(hereafterreferredtoas“articles”).
OursearchapproachdifferssignificantlyfromthatofO*NET.WhileO*NETmeticulouslyindexedandcategorizedsourceswithinitsreferencebook,thespecificsofitsselectionprocessaresparinglydescribed.Thereisnodetailedinformationonspecifickeywordsormethodsusedingatheringthearticles.Itinvolvedcollectingandreviewingmorethan60publications,includingacademicjournals,commissionedreports,industrywhitepapers,andgovernmenttechnicalreports.Additionally,O*NETconductedasubstantialreviewofvariousinternetsourcesrelatedtothegreensector’sworkforce(O*NET2013).
IdentificationofGreenJobTitlesintheLiterature
WeusedtheRAGmodeltosimulatetheworktraditionallyperformedbyresearchassistantswhowouldmanuallytaggreenjobtitleswithinarticles.Thismanualtaggingprocess,extendingover1,000pagesacrossthearticlesintheanalysisset,isresource-intensiveandsusceptibletoerrorsfromhumanoversight,cognitivebiases,andheuristicshortcuts.Incontrast,theRAGmodeloffersarobustandconsistentapproach.
AsignificantadvantageofusingtheRAGmodelisthereproducibilityoftheresults.ByutilizingseedparametersavailableintheOpenAImodels,specificallytheGenerativePre-trainedTransformer4(GPT-4)-0125-previewmodel,weensuredthatourresultswerereplicable,providingadegreeofconsistencythatmanualtaggingstrugglestoachieve.Althoughthemodelscannotbeentirelydeterministicduetotheirinherentstochasticnature,theuseofseedparametershelpstoensurethattheresultsarehighlyconsistentacrossmultipleruns(Anadkat2023).Furthermore,theadvancednaturallanguageunderstandingcapabilitiesoftheGPT-4modelenabledanuancedanalysisofthecontextinwhichjobtitlesarediscussedinthearticles.Thisisparticularlyvitalinouranalysisset,wheregreenandnongreenjobsareoftenmentionedinthesamearticles.Themodel’sabilitytodiscernthecontextandclassifyjobtitlesaccordinglyisasubstantialimprovementoverolderNLPapproaches,suchaslesscapableembeddingmodelslikeBERTorfullysupervisedmethodslikenamedentityrecognition(NER),whichmightnotcapturesuchsubtletiesornuances.
5
EmployingtheRAGmodel,weusedembeddingmodelstoidentifyrelevantsectionswithinarticles(chunks)thatdiscussedspecificjobtitles.WeusedOpenAI’smostcapabletext-embedding-3-largemodelwith3,072dimensionsintheembeddingprocess.Whilechunkingisoftenemployedtocircumventthecontextwindowlimitationsofcertainmodels,ourapplicationofGPT-4,whichboastsanexpansivecontextwindowof128,000tokens(comparableto96,000words),wasnothinderedbysuchconstraints.Instead,thedecisiontochunktextinouranalysiswasdictatedbythefactthatchunkingsignificantlyimprovestherelevanceofretrievedcontentasitdecreasesnoiseintheembeddedtext(Yepesetal.2024).Next,weemployedtheGPT-4modeltoscrutinizesegmentsofarticleswherejobtitleswerementioned,aimingtoinferfromthecontextwhethertheauthorsclassifiedtheserolesasexamplesofgreenjobs.Awareoftheseveralcompetingdefinitionsof“greenjobs”intheacademicliterature(Stanef-Puic?etal.2022),werefrainedfromadheringtoanysingulardefinition.Instead,wedirectedthemodeltodetermineiftheauthorsconsideredthatthesejobsweregreen,suchaswhethertheywerediscussedwithintherealmsofthegreeneconomy,sustainability,orclimatechangemitigation.Wepurposefullydidnotexposethemodeltoanypreestablishedclassificationsofgreenjobstopreventprimingeffectsandpromoteanunbiasedevaluationbasedoncontext.WepresentamoredetaileddescriptionoftheRAGmodel’spipelinestagesintheappendix.
ThegenerativecapabilitiesoftheAIwerespecificallyharnessedinthefinalstageoftheRAGmodelimplementationprocess(figure1).WhiletheAIpossessesextensiveknowledgefromitstraining,ourmodelstrategicallyrefrainsfromusingthisknowledge.Themodel’sgenerativefunctionsarenotemployedtointroduceorinferinformationfromitstrainingbutrathertointerpretandanalyzethetextthatispresentedtoit.Whenthemodelidentifiespotentialsectionsofthetextthatmightdiscussgreenjobs,itleveragesitsnaturallanguageunderstandingcapabilitiestoanalyzethegiventext.Thegoalistoascertainwhethertheauthorsofthearticlesareindeedmentioningspecificjobtitlesandifthesetitlesarediscussedwithinthegreencontext.
ThemodelweusedhascommonalitieswithNER,aprocessinNLPthatinvolvesidentifyingandcategorizingkeyinformation(entities)intext(Li,Shietal.2020).Entitiescouldbenamesofpeople,companies,locations,andsoforth.Ourworkparallelsthisapproachbyidentifyinggreenjobtitleswithintext.IllustratingtheprogressioninNLP,researchhasshownthateventheolderGPT-3modelcouldmatchtheperformanceoffullysupervisedNERbaselines(Wangetal.2023).Zhouetal.(2023)demonstratethattheLargeLanguageModelMetaAI,alargelanguagemodel(LLM),significantlyoutperformssupervisedNERmodels,asevidencedbyasubstantialmarginintheF1score,ameasureofatest’saccuracy.Thiscomparisonspanned43datasetsencompassingninevarieddomains.Similarly,Monajatipooretal.(2024)demonstratethatinthebiomedicalfield,GPT-4outperformstraditionalNERmodels.
EmpiricalstudiescomparingGPTmodelstoearliertextminingmethods,suchasBERT,remainlimited.Comparedtofine-tunedBERTmodels,GPT-3hasexhibitedsuperiorperformanceintextclassificationtasksinrelatedcontexts(LigaandRobaldo2023;PawarandMakwana2022).However,GPT-4,whenemployedinazero-shotsetting,significantlyoutperformedthebaseBERTmodelbutwasoutperformedbyfine-tunedBERTmodelsinspecifictaskssuchasproteinsequenceidentification(Rehanaetal.2023).Despitethesefindings,nostudieshavebeenidentifiedthatdirectlycomparetheperformanceofthesemodelsinacontextsimilartoours,whereaccurateclassificationishighlycontingentonthesurroundingcontext,suchasdistinguishing
6
betweengreenandnongreenjobs.WepositthatGPTmightoutperformBERTinthiscontextbecauseitsmorecomplexarchitecture,largernumberofparameters,andabilitytohandlelongercontextlengthslikelyenableittobetterdifferentiatenuanced,context-dependentinformation,suchasclassifyingjobsasgreen.
Akeyfeatureneededinsuchexercisesisvalidatingtheoutputofthemodel.Infieldslikebiology,medicine,law,programming,orfinance,standardizedbenchmarksexisttomeasuretheefficacyofLLMsasNERtools(Zhouetal.2023).However,forourpurposes,suchbenchmarksareunavailable.Toensurethevalidityofourresults,weundertooktwotypesofchecks.First,wespecificallyfocusedonarticlesforwhichthemodeldidnotidentifyanygreenjobtitlestocheckforfalsenegatives.Thissituationisrelativelycommonsinceauthorsmightdiscussgreensectorsoftheeconomywithoutexplicitlymentioningjobtitles.Tothisend,werandomlyselectedasampleofsucharticlestoreviewmanually,ensuringthattheabsenceofidentifiedgreenjobtitleswasconsistentwiththecontentofthearticles.Second,weconductedareviewofallthearticlesinwhichthemodelidentifiedjobtitles.Thisstepwastocheckforfalsepositives—thatis,erroneouslyclassifyingnongreenjobtitlesasgreen—andtodetectanyinstancesofhallucinationswherethemodelmightgeneratenonexistentjobtitles.
Togainabetterunderstandingofthecontextinwhichgreenjobsareanalyzed,wemappedthearticlesmentioninggreenjobtitlestoeconomicactivities,basedontheInternationalStandardIndustrialClassificationofAllEconomicActivities(ISIC)classificationscheme.ISICisaUnitedNationssystemforclassifyingeconomicdataaccordingtoindustry.Forthismapping,weprovidedChatGPT-3.5withtheISICclassification,includingdescriptionsofallactivities,andpromptedittofindthebesttop-levelmatchesforallarticles.
Wealsoidentifiedthegeographicalcoverageofalltheretrievedarticles.Forthis,wepromptedChatGPT-3.5toretrievecountriesmentionedasthebasisforanalysisintheabstractsandtitlesofallthearticles.Ifnocountrieswerementioned,weassumedthatthearticlehadaglobalperspective.Next,weusedPython’spycountrypackage(Theune2024)forfuzzymatchingofthecountrynameswithofficialISOcountrycodesandidentifiedthecontinentsofthecountries.Thisapproachallowedustoillustratethegloballandscapeofgreenjobsresearch.
MatchingofIdentifiedGreenJobTitleswithO*NET
WeemployedembeddingmodelingtorepresentboththejobtitlesweidentifiedandthosefromO*NETas3,072-dimensionalvectors,enablingasystematiccomparison.Forthistask,weusedthetext-embedding-3-largemodel.Byutilizingcosinesimilarity,arecommendeddistancemeasureforthismodel,weidentifiedtheclosestmatchesbetweenouridentifiedjobtitlesandthoseinO*NET.CaseswherethejobtitlesshowedonlyminimalsimilarityindicatedpotentialnewgreenjobtitlesthatwerenotyetrecognizedinO*NET.Thematchingprocessforthissteppresentedasignificantchallengeforthemodelbecauseitoperatedwithminimalcontextthatincludedonlythejobtitlesthemselves.HadwebeenabletoutilizedetailedtasksandskillsrelevanttothesejobsalongsidethejobdescriptionsfromO*NET,wecouldhaveachievedamoreinformedandaccuratematchingprocess.However,thenatureofthearticlestypicallydoesnotlenditselftoasystematicdiscussionofjobroles,includingspecifictasksandskills.
7
Wealsomappedthegreenjobtitlesintomajorgreeneconomysectorsthroughclusteringbasedontheirsemanticsimilarity.WeusedjobtitleembeddingsandappliedUniformManifoldApproximationandProjectionforDimensionReduction(UMAP)(McInnes,Healy,andMelville2018),followedbyHierarchicalDensity-BasedSpatialClustering(HDBSCAN)(McInnes,Healy,andAstels2017).Fine-tuningthesetechniqueswasessentialtoachievemeaningfulresults.
WeconfiguredUMAPwith10neighborstobalancelocalandglobalstructure,andaminimumdistanceof0.1tocontrolthedensityofpointpacking,ensuringthatlocaldetailwaspreserved.Thisconfigurationmaintainssimilarityamongnearbypoints(localstructure)whilegroupingclustersofsimilarpointstogether(globalstructure).
Forclustering,weusedHDBSCANwithaminimumclustersizeof10toensuresignificanceandaminimumsamplesizeoffourtodefinethenumberofpointsrequiredtoformadenseregion.
3.Results
GreenLiterature
Oursearchyieldedatotalof1,367articles,withScopuscontributing991articlesandWebofSciencecontributing376articles(table1).WeusedtheDigitalObjectIdentifierandInternationalStandardSerialNumbertocross-checktheuniquenessofthearticlesacrossthetwodatabases.Wefoundthat88percentofthearticlesindexedinWebofSciencewerealsoindexedinScopus.Consequently,weintegratedtheuniquearticlesfromWebofScience—thosenotfoundinScopus—toarriveatourunique“analysisset”of1,067articles.Inourensuinganalysis,weusedthefulltextsof567articlesforwhichwewereabletoretrievePortableDocumentFormat(PDF)filesandtheabstractsfortheremaining500articles.Whilemostofthepublicationsarearticles,with915fromScopusand353fromWebofScience,weretrievedadiversesetofpublications,includingconferenceproceedings,bookchapters,andothermaterials(table2).
Boththenumberandgeographicalspreadofthearticlesongreenliteraturehaveexpandedsince2009.In2009,therewere44articles,andin2023,therewere162articles(figure2).Moreover,thearticlesin2009almostexclusivelycoveredNorthAmerica(table3).However,thescopegraduallydiversified.Notably,by2015,thenumberofarticlescoveringEuropeancountrieshadsurpassedthosecoveringNorthAmericancountriesincumulativeterms;by2022,thesamehadoccurredforAsiancountries.
Intheearlyyearsofouranalysisperiod,therewerenoarticlesfocusingspecificallyongreenjobsinSouthAmericaandhardlyanyinAfricaorOceania.Thissituationhaschangeddramatically,withsubstantialincreasesinthenumberofarticlescoveringthesecontinentsovertime.Thistrendindicatesthatresearchongreenjobsisbecomingincreasinglyglobalized,encompassingabroaderrangeofgeographicalsettings.
GreenJobTitles
Weinitiallyidentified799potentialgreenjobtitlesusingtheRAGpipeline(seefileinGitHubforthelistoftitles).Weexcluded66titles,astheywerenotjobtitlesbutreferredtogreenactivities.
8
Forexample,inthestudybyAfolabietal.(2018),whilethemodelcorrectlyidentified“environmentalcompliancespecialist”asagreenjobtitle,italsoincorrectlytaggedactivitieslike“solarpanelmanufacturing”or“reductionofwaterusageon-site”asjobtitles.Thefollowingisthedirectcitationfromwhichthemodelinferredthesetitles:“Thedatarevealedareasthatarepeculiartotheprovisionofgreenjobsintheconstructionsectorsuchassolarpanelmanufacturing(...)”(Afolabietal.2018,2).Itseemsthatthemodelerroneouslyassumedthatthephrase“greenjobsintheconstructionsectorsuchas(...)”wasintroducingalistofjobtitles.ThismisinterpretationillustratesthetypesofheuristicsthemodelmightemployandemphasizestheimportanceofqualitycheckswhileworkingwithLLMsintheircurrentstateofdevelopment.Next,weexcluded21titlesbecausetheyweretoobroad,suchas“technicians”and“engineers.”Thisindicatesthatdespiteinstructingthemodelinourpromptstoreturnonlyspecificjobtitles,roles,oroccupations,iterroneouslyproducednonspecificresultsinalimitednumberofinstances.Finally,westandardizedalljobtitlestotheirsingularformsandremovedduplicates.Thisprocesseliminatedanadditional17jobtitles,resultinginatotalof695uniquegreenjobtitles.
Ouranalysisrevealedthatthe695jobtitlesappearinfrequentlyacrossthe1,067articles,withjust105articles(10percentofthetotalanalysisset)mentioningoneormoregreenjobtitles.Additionally,jobtitlesweremorefrequentlyidentifiedinfulltexts,withonly19jobtitlesfoundinabstracts.
Theglobalperspectiveissignificant,with28articlesreferencinggreenjobtitlesinternationally(table4).TheUnitedStatesfollowsclosely,withmentionsin20articleswithgreenjobtitles.TheEuropeanUnioniswell-representedwith13mentions.OthernotablecountriesincludeBrazil,China,andSpain,eachwith6mentions.Intotal,wefound40countriesmentionedinthearticleswithgreenjobtitles,although19countrieswerementionedonlyonce.
Overone-thirdofthejobtitlesareinengineering,anotherone-fiftharetechnician-leveljobs,andasignificantshareincludesjobsinbusinessandadministration,suchaspolicyspecialists.Severalothertitlesareintheareasofbuildingand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 1白鷺說課稿-2024-2025學(xué)年五年級上冊語文統(tǒng)編版
- 科技驅(qū)動家居新潮流
- 外匯互換合同(2篇)
- 2024馬鈴薯種植基地生態(tài)環(huán)境監(jiān)測合同3篇
- 全新辦理協(xié)議離婚程序下載
- 2024招投標(biāo)與合同管理實務(wù)操作與案例分析心得總結(jié)3篇
- 臨時用工合同范本
- 海邊異國游記的故事征文
- 2024年綠色能源管理合同
- 14 當(dāng)沖突發(fā)生(說課稿)-部編版(五四制)道德與法治四年級上冊
- 勞務(wù)服務(wù)合作協(xié)議書范本
- 駕駛員勞務(wù)派遣應(yīng)急預(yù)案
- 中醫(yī)五臟心完整版本
- 聚合工藝作業(yè)安全培訓(xùn)課件
- 智能音箱方案
- 2022年7月25日多?。ㄊ小^(qū))公務(wù)員聯(lián)考《公安基礎(chǔ)知識》(專業(yè)科目)試卷(網(wǎng)友回憶版)
- 2024年廣東省職業(yè)院校技能大賽中職組《導(dǎo)游服務(wù)》賽項備考試題庫(含答案)
- 手推車檢測技術(shù)規(guī)范
- 京東商城物流配送現(xiàn)狀及對策分析
- 個人極端事件防范應(yīng)急預(yù)案
- JJF 1521-2023燃油加油機(jī)型式評價大綱(試行)
評論
0/150
提交評論