湖北省荊門市鐘祥一中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
湖北省荊門市鐘祥一中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
湖北省荊門市鐘祥一中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
湖北省荊門市鐘祥一中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
湖北省荊門市鐘祥一中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北省荊門市鐘祥一中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的兩個(gè)焦點(diǎn),,是雙曲線上一點(diǎn),且,,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.2.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點(diǎn).直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面中,且都垂直于AB,已知,,,則()A. B.C. D.3.已知五個(gè)數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,則該樣本標(biāo)準(zhǔn)差為()A.1 B.C. D.24.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點(diǎn),若,則k的取值范圍是()A. B.(-∞,]∪[0,+∞)C. D.5.已知點(diǎn)、是雙曲線C:的左、右焦點(diǎn),P是C左支上一點(diǎn),若直線的斜率為2,且為直角三角形,則雙曲線C的離心率為()A.2 B.C. D.6.已知橢圓的焦點(diǎn)分別為,,橢圓上一點(diǎn)P與焦點(diǎn)的距離等于6,則的面積為()A.24 B.36C.48 D.607.若,則的最小值為()A.1 B.2C.3 D.48.若方程表示雙曲線,則此雙曲線的虛軸長等于()A. B.C. D.9.設(shè),則當(dāng)數(shù)列{an}的前n項(xiàng)和取得最小值時(shí),n的值為()A.4 B.5C.4或5 D.5或610.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.11.已知,則點(diǎn)關(guān)于平面的對稱點(diǎn)的坐標(biāo)是()A. B.C. D.12.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項(xiàng)和()A.165 B.138C.60 D.30二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點(diǎn)分別為,右頂點(diǎn)為,為雙曲線上一點(diǎn),且,線段的垂直平分線恰好經(jīng)過點(diǎn),則雙曲線的離心率為_______14.在公差不為的等差數(shù)列中,,,成等比數(shù)列,數(shù)列的前項(xiàng)和為(1)求數(shù)列的通項(xiàng)公式;(2)若,且數(shù)列的前項(xiàng)和為,求15.過橢圓上一點(diǎn)作軸的垂線,垂足為,則線段中點(diǎn)的軌跡方程為___________.16.從1,3,5,7中任取2個(gè)數(shù)字,從0,2,4,6,8中任取2個(gè)數(shù)字,組成沒有重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)一共有___________個(gè).(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱柱中,.(1)求證:平面平面.(2)若,在線段上是否存在一點(diǎn)使平面和平面所成角的余弦值為若存在,確定點(diǎn)的位置;若不存在,說明理由.18.(12分)已知在長方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點(diǎn)F,使二面角A-BE-F的余弦值為?若存在,找出點(diǎn)F的位置;若不存在,說明理由.19.(12分)已知是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列通項(xiàng)公式為,求數(shù)列的前n項(xiàng)和.20.(12分)已知等差數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式及;(2)設(shè),求數(shù)列的前n項(xiàng)和.21.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實(shí)根.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍22.(10分)在數(shù)列中,,點(diǎn)在直線上.(1)求的通項(xiàng)公式;(2)記的前項(xiàng)和為,且,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)條件設(shè),,由條件求得,即可求得雙曲線方程.【詳解】設(shè),則由已知得,,又,,又,,雙曲線的標(biāo)準(zhǔn)方程為.故選:D2、B【解析】根據(jù)題意,作,且,則四邊形ABDE為平行四邊形,進(jìn)一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進(jìn)而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因?yàn)?,所以,又,所以是該二面角的一個(gè)平面角,即,由余弦定理.因?yàn)?,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.3、B【解析】先求出的值,然后利用標(biāo)準(zhǔn)差公式求解即可【詳解】解:因?yàn)槲鍌€(gè)數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,所以,解得,所以標(biāo)準(zhǔn)差,故選:B4、A【解析】圓心為,半徑為2,圓心到直線的距離為,解不等式得k的取值范圍考點(diǎn):直線與圓相交的弦長問題5、B【解析】根據(jù)雙曲線的定義和勾股定理利用即可得離心率.【詳解】∵直線的斜率為2,為直角三角形,∴,又,∴,.∵,即,∴故選:B.6、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.7、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時(shí),取等號.即所求最小值.故選:D8、B【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長為,故選:B.9、A【解析】結(jié)合等差數(shù)列的性質(zhì)得到,解不等式組即可求出結(jié)果.【詳解】由,即,解得,因?yàn)?故.故選:A.10、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計(jì)算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).11、C【解析】根據(jù)對稱性求得坐標(biāo)即可.【詳解】點(diǎn)關(guān)于平面的對稱點(diǎn)的坐標(biāo)是,故選:C12、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項(xiàng),然后由等差數(shù)列的前項(xiàng)和公式計(jì)算【詳解】因?yàn)椋?,成等比?shù)列,所以,所以,解得,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】在中求出,再在中求出,即可得到的齊次式,化簡即可求出離心率【詳解】設(shè)雙曲線:,,不妨設(shè)為雙曲線右支上一點(diǎn)因?yàn)榫€段的垂直平分線恰好經(jīng)過點(diǎn),且,所以,在中,,所以,,在中,,所以,,因此,,化簡得,,即,而,解得故答案為:14、(1)(2)【解析】(1)由解出,再由前項(xiàng)和為55求得,由等差數(shù)列通項(xiàng)公式即可求解;(2)先求出,再由裂項(xiàng)相消求和即可.【小問1詳解】設(shè)公差為,由,,成等比數(shù)列,可得,即有,整理得,數(shù)列的前項(xiàng)和為55,可得,解得1,1,則;【小問2詳解】,則15、【解析】相關(guān)點(diǎn)法求解軌跡方程.【詳解】設(shè),則,則,即,因?yàn)?,代入可得,即的軌跡方程為.故答案為:16、1296【解析】根據(jù)取出的數(shù)字是否含有零,分類討論,若不含零,則有四位數(shù)個(gè),若含有零,則有四位數(shù)個(gè),再根據(jù)分類加法計(jì)數(shù)原理即可求出【詳解】若取出的數(shù)字中不含零,則有四位數(shù)個(gè);若取出的數(shù)字中含零,則有四位數(shù)個(gè);所以,這樣的四位數(shù)有個(gè)故答案為:1296三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn).【解析】(1)連接,根據(jù)給定條件證明平面得即可推理作答.(2)在平面內(nèi)過C作,再以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,利用空間向量計(jì)算判斷作答.【小問1詳解】在三棱柱中,四邊形是平行四邊形,而,則是菱形,連接,如圖,則有,因,,平面,于是得平面,而平面,則,由得,,平面,從而得平面,又平面,所以平面平面.【小問2詳解】在平面內(nèi)過C作,由(1)知平面平面,平面平面,則平面,以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,如圖,因,,則,假設(shè)在線段上存在符合要求的點(diǎn)P,設(shè)其坐標(biāo)為,則有,設(shè)平面的一個(gè)法向量,則有,令得,而平面的一個(gè)法向量,依題意,,化簡整理得:而,解得,所以在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn),使平面和平面所成角的余弦值為.18、(1)證明見解析(2)點(diǎn)F為線段AC的中點(diǎn)【解析】(1)由平面幾何知識證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點(diǎn)O,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,假設(shè)在線段AC上存在點(diǎn)F,設(shè)=λ,運(yùn)用二面角的向量求解方法可求得,可得點(diǎn)F的位置.【小問1詳解】證明:因?yàn)樵陂L方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點(diǎn)F,F(xiàn)為線段AC的中點(diǎn).由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點(diǎn)O,則,又平面ABE⊥平面BCDE,面面,所以面,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,如圖所示,取平面ABE的一個(gè)法向量為.假設(shè)在線段AC上存在點(diǎn)F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設(shè)=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設(shè)平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當(dāng)點(diǎn)F為線段AC的中點(diǎn)時(shí),二面角A-BE-F的余弦值為.19、(1);(2).【解析】(1)設(shè)的公比為,利用基本量運(yùn)算求出公比,可得數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法計(jì)算出數(shù)列的前n項(xiàng)和【詳解】(1)設(shè)的公比為,由題意知:,.又,解得,,所以.(2).令,則,因此,又,兩式相減得所以.【點(diǎn)睛】方法點(diǎn)睛:本題考查等比數(shù)列的通項(xiàng)公式,考查數(shù)列的求和,數(shù)列求和的方法總結(jié)如下:

公式法,利用等差數(shù)列和等比數(shù)列的求和公式進(jìn)行計(jì)算即可;

裂項(xiàng)相消法,通過把數(shù)列的通項(xiàng)公式拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求出數(shù)列的和;

錯(cuò)位相減法,當(dāng)數(shù)列的通項(xiàng)公式由一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的乘積構(gòu)成時(shí)使用此方法;

倒序相加法,如果一個(gè)數(shù)列滿足首末兩項(xiàng)等距離的兩項(xiàng)之和相等,可以使用此方法求和20、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,利用等差數(shù)列前n項(xiàng)和公式求出;(2)求得,利用裂項(xiàng)相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式,;【小問2詳解】由(1)可得,所以,所以.21、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時(shí)的取值范圍;(2)先求得命題為真命題時(shí)的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論