2025屆浙江省湖州市9+1高中聯(lián)盟長興中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
2025屆浙江省湖州市9+1高中聯(lián)盟長興中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
2025屆浙江省湖州市9+1高中聯(lián)盟長興中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
2025屆浙江省湖州市9+1高中聯(lián)盟長興中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
2025屆浙江省湖州市9+1高中聯(lián)盟長興中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆浙江省湖州市9+1高中聯(lián)盟長興中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.用數(shù)學(xué)歸納法時(shí),從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.2.已知橢圓的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),為軸上一點(diǎn),點(diǎn)是直線與橢圓的一個(gè)交點(diǎn),且,則橢圓的離心率為()A. B.C. D.3.已知,為正實(shí)數(shù),且,則的最小值為()A. B.C. D.14.我國古代數(shù)學(xué)論著中有如下敘述:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結(jié)論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍5.已知數(shù)據(jù)的平均數(shù)是,方差是4,則數(shù)據(jù)的方差是()A.3.4 B.3.6C.3.8 D.46.設(shè),則是的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.58.已知雙曲線的兩個(gè)頂點(diǎn)分別為A、B,點(diǎn)P為雙曲線上除A、B外任意一點(diǎn),且點(diǎn)P與點(diǎn)A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.39.已知,為雙曲線:的焦點(diǎn),為,(其中為雙曲線半焦距),與雙曲線的交點(diǎn),且有,則該雙曲線的離心率為()A. B.C. D.10.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}11.在等差數(shù)列中,為其前項(xiàng)和,若.則()A. B.C. D.12.已知雙曲線漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)是橢圓上任意一點(diǎn),則點(diǎn)到直線距離的最小值為______14.某廠將從64名員工中用系統(tǒng)抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號(hào)為1~64,若已知8號(hào)、24號(hào)、56號(hào)在樣本中,那么樣本中最后一個(gè)員工的號(hào)碼是__________15.如圖,橢圓的左右焦點(diǎn)為,,以為圓心的圓過原點(diǎn),且與橢圓在第一象限交于點(diǎn),若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.16.函數(shù)極值點(diǎn)的個(gè)數(shù)是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了謳歌中華民族實(shí)現(xiàn)偉大復(fù)興的奮斗歷程,增進(jìn)學(xué)生對中國共產(chǎn)黨的熱愛,某學(xué)校舉辦了一場黨史競賽活動(dòng),共有名學(xué)生參加了此次競賽活動(dòng).為了解本次競賽活動(dòng)的成績,從中抽取了名學(xué)生的得分(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),所有學(xué)生的得分都不低于分,將這名學(xué)生的得分進(jìn)行分組,第一組,第二組,第三組,第四組(單位:分),得到如下的頻率分布直方圖(1)求圖中的值,估計(jì)此次競賽活動(dòng)學(xué)生得分的中位數(shù);(2)根據(jù)頻率分布直方圖,估計(jì)此次競賽活動(dòng)得分的平均值.若對得分不低于平均值的同學(xué)進(jìn)行獎(jiǎng)勵(lì),請估計(jì)在參賽的名學(xué)生中有多少名學(xué)生獲獎(jiǎng)18.(12分)已知等差數(shù)列的前項(xiàng)的和為,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),記數(shù)列的前項(xiàng)和,求使得恒成立時(shí)的最小正整數(shù).19.(12分)設(shè)命題方程表示中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.20.(12分)在二項(xiàng)式的展開式中;(1)若,求常數(shù)項(xiàng);(2)若第4項(xiàng)的系數(shù)與第7項(xiàng)的系數(shù)比為,求:①二項(xiàng)展開式中的各項(xiàng)的二項(xiàng)式系數(shù)之和;②二項(xiàng)展開式中各項(xiàng)的系數(shù)之和21.(12分)已知橢圓F:經(jīng)過點(diǎn)且離心率為,直線和是分別過橢圓F的左、右焦點(diǎn)的兩條動(dòng)直線,它們與橢圓分別相交于點(diǎn)A、B和C、D,O為坐標(biāo)原點(diǎn),直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標(biāo)準(zhǔn)方程(2)是否存在定點(diǎn)P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由22.(10分)如圖,在四棱錐中,底面ABCD為直角梯形,,,底面ABCD,E為BP的中點(diǎn),,(1)證明:平面PAD;(2)求平面EAC與平面PAC夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分別求出n=k時(shí)左端的表達(dá)式,和n=k+1時(shí)左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時(shí),左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時(shí),左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點(diǎn)睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時(shí)左端的表達(dá)式和n=k+1時(shí)左端的表達(dá)式,是解題的關(guān)鍵2、D【解析】設(shè)橢圓的左焦點(diǎn)為,由橢圓的對稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【詳解】設(shè)橢圓的左焦點(diǎn)為,連接,因?yàn)椋?,如圖所示,所以,設(shè),,則,所以,故選:D.3、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最小值為1,故選:D.4、C【解析】由題設(shè)易知是公比為2的等比數(shù)列,應(yīng)用等比數(shù)列前n項(xiàng)和公式求,結(jié)合各選項(xiàng)的描述及等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.5、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數(shù)據(jù)的方差為:.故選:B6、B【解析】,,所以是必要不充分條件,故選B.考點(diǎn):1.指、對數(shù)函數(shù)的性質(zhì);2.充分條件與必要條件.7、C【解析】直線l過定點(diǎn)D(1,1),當(dāng)時(shí),弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時(shí),直線l被圓截得的弦長最短,,弦長=.故選:C.8、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進(jìn)而求得離心率【詳解】根據(jù)題意得到設(shè),因?yàn)?,所以,所以,則故選:C.9、B【解析】根據(jù)求得的關(guān)系,結(jié)合雙曲線的定義以及勾股定理,即可求得的等量關(guān)系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點(diǎn)在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.10、D【解析】根據(jù)集合交集的運(yùn)算法則計(jì)算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.11、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.12、A【解析】由雙曲線的漸近線方程,可得,再由的關(guān)系和離心率公式,計(jì)算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點(diǎn)到直線的最小值.【詳解】設(shè)與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.14、40【解析】結(jié)合系統(tǒng)抽樣的抽樣方法來確定最后抽取的號(hào)碼.【詳解】因?yàn)榉侄伍g隔為,故最后一個(gè)員工的號(hào)碼為.故答案為:15、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點(diǎn)睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.16、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點(diǎn)的情況.【詳解】因?yàn)?,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點(diǎn)的個(gè)數(shù)是0,故答案為:0.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),中位數(shù)為;(2)得分的平均值為,估計(jì)有260名學(xué)生獲獎(jiǎng).【解析】(1)根據(jù)給定的頻率分布直方圖,利用各小矩形面積和為1計(jì)算得值;再由在中位數(shù)兩側(cè)所對小矩形面積相等即可計(jì)算得解.(2)由頻率分布直方圖求平均數(shù)的方法求出得分平均值即可估計(jì);再求出不低于平均分的頻率即可估計(jì)獲獎(jiǎng)人數(shù).【小問1詳解】由頻率分布直方圖知:,解得,設(shè)此次競賽活動(dòng)學(xué)生得分的中位數(shù)為,因數(shù)據(jù)落在內(nèi)的頻率為0.4,落在內(nèi)的頻率為0.8,從而可得,由得:,所以,估計(jì)此次競賽活動(dòng)學(xué)生得分的中位數(shù)為.【小問2詳解】由頻率分布直方圖及(1)知:數(shù)據(jù)落在,,,的頻率分別為,,此次競賽活動(dòng)學(xué)生得分不低于82的頻率為,則,所以估計(jì)此次競賽活動(dòng)得分的平均值為,在參賽的名學(xué)生中估計(jì)有260名學(xué)生獲獎(jiǎng).18、(1)(2)1【解析】(1)先設(shè)設(shè)等差數(shù)列的公差為,由,列出方程組求出首項(xiàng)和公差即可;(2)由(1)先求出,再由裂項(xiàng)相消法求數(shù)列的前項(xiàng)和即可.【詳解】解:(1)設(shè)等差數(shù)列的公差為,因?yàn)椋?,所以解得所以?shù)列的通項(xiàng)公式為.(2)由(1)可知∴,∴,∴,∴的最小正整數(shù)為1【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式,以及裂項(xiàng)相消法求數(shù)列前項(xiàng)和的問題,熟記公式即可,屬于基礎(chǔ)題型.19、【解析】求出當(dāng)命題、分別為真命題時(shí)實(shí)數(shù)的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應(yīng)的實(shí)數(shù)的取值范圍,綜合可得結(jié)果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因?yàn)椤啊睘榧倜},“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時(shí).綜上所述,實(shí)數(shù)的范圍為.20、(1)60(2)①1024;②1【解析】(1)根據(jù)二項(xiàng)式定理求解(2)根據(jù)二項(xiàng)式定理與條件求解,二項(xiàng)式系數(shù)之和為,系數(shù)和可賦值【小問1詳解】若,則,(,…,9)令∴∴常數(shù)項(xiàng)為.【小問2詳解】,(,…,),解得①②令,得系數(shù)和為21、(1);(2)存在點(diǎn),使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點(diǎn)的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點(diǎn),,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點(diǎn)的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時(shí),設(shè)斜率分別為,點(diǎn),直線AB為,聯(lián)立,得則,,同理可得,,因?yàn)?,所以,化簡得由題意,知,所以設(shè)點(diǎn),則,所以,化簡得,當(dāng)直線或的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,也滿足此方程所以點(diǎn)在橢圓上,根據(jù)橢圓定義可知,存在定點(diǎn),使得為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點(diǎn)M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.22、(1)證明見解析(2)【解析】(1)通過作輔助線,構(gòu)造平行四邊形,在平面PAD找到線并證明,根據(jù)線面平行的判定定理即可證明;(2)建立空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),進(jìn)而求得相關(guān)的向量坐標(biāo),求出平面EAC與平面PAC的法向量,根據(jù)向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論