廣東省廣州市越秀區(qū)實驗中學(xué)2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第1頁
廣東省廣州市越秀區(qū)實驗中學(xué)2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第2頁
廣東省廣州市越秀區(qū)實驗中學(xué)2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第3頁
廣東省廣州市越秀區(qū)實驗中學(xué)2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第4頁
廣東省廣州市越秀區(qū)實驗中學(xué)2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省廣州市越秀區(qū)實驗中學(xué)2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則,,大小關(guān)系為()A. B.C. D.2.在平面直角坐標系中,角的頂點與原點重合,角的始邊與軸非負半軸重合,角的終邊經(jīng)過點,則()A B.C. D.3.已知,則的值為()A.3 B.6C.9 D.4.已知直線與直線平行,則的值為A.1 B.3C.-1或3 D.-1或15.已知是定義在上的單調(diào)函數(shù),滿足,則函數(shù)的零點所在區(qū)間為()A. B.C. D.6.已知,則的值是A. B.C. D.7.函數(shù)的圖象可能是A. B.C. D.8.已知,,且,則的最小值為()A.2 B.3C.4 D.89.在特定條件下,籃球賽中進攻球員投球后,籃球的運行軌跡是開口向下的拋物線的一部分.“蓋帽”是一種常見的防守手段,防守隊員在籃球上升階段將球攔截即為“蓋帽”,而防守隊員在籃球下降階段將球攔截則屬“違規(guī)”.對于某次投籃而言,如果忽略其他因素的影響,籃球處于上升階段的水平距離越長,則被“蓋帽”的可能性越大.收集幾次籃球比賽的數(shù)據(jù)之后,某球員投籃可以簡化為下述數(shù)學(xué)模型:如圖所示,該球員的投籃出手點為P,籃框中心點為Q,他可以選擇讓籃球在運行途中經(jīng)過A,B,C,D四個點中的某一點并命中Q,忽略其他因素的影響,那么被“蓋帽”的可能性最大的線路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q10.如圖,在正四棱柱中,,點是平面內(nèi)的一個動點,則三棱錐的正視圖和俯視圖的面積之比的最大值為A B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則___________..12.若函數(shù)的圖象與的圖象關(guān)于對稱,則_________.13.設(shè)函數(shù)fx=ex-1,x≥a-xx2-5x+6,x<a,則當(dāng)時,14.已知向量,,,則=_____.15.若命題“”為真命題,則的取值范圍是______16.函數(shù)的定義域是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)向量,且與不共線(1)求證:;(2)若向量與的模相等,求.18.如圖,彈簧掛著的小球做上下振動,它在(單位:)時相對于平衡位置(靜止時的位置)的高度(單位:)由關(guān)系式確定,其中,,.在一次振動中,小球從最高點運動至最低點所用時間為.且最高點與最低點間的距離為(1)求小球相對平衡位置的高度(單位:)和時間(單位:)之間的函數(shù)關(guān)系;(2)小球在內(nèi)經(jīng)過最高點的次數(shù)恰為50次,求的取值范圍19.一個半徑為2米的水輪如圖所示,其圓心O距離水面1米,已知水輪按逆時針勻速轉(zhuǎn)動,每4秒轉(zhuǎn)一圈,如果當(dāng)水輪上點P從水中浮現(xiàn)時(圖中點)開始計算時間.(1)以過點O且與水面垂直的直線為y軸,過點O且平行于水輪所在平面與水面的交線的直線為x軸,建立如圖所示的直角坐標系,試將點P距離水面的高度h(單位:米)表示為時間t(單位:秒)的函數(shù);(2)在水輪轉(zhuǎn)動的任意一圈內(nèi),有多長時間點P距水面的高度超過2米?20.已知函數(shù)⑴判斷并證明函數(shù)的奇偶性;⑵若,求實數(shù)的值.21.(1)已知,求最大值(2)已知且,求的最小值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由對數(shù)的性質(zhì),分別確定的大致范圍,即可得出結(jié)果.【詳解】因為,所以,,所以,,,所以.故選:C.2、A【解析】根據(jù)任意角的三角函數(shù)定義即可求解.【詳解】解:由題意知:角的終邊經(jīng)過點,故.故選:A.3、A【解析】直接由對數(shù)與指數(shù)的互化公式求解即可【詳解】解:由,得,故選:A4、A【解析】因為兩條直線平行,所以:解得m=1故選A.點睛:本題主要考查直線的方程,兩條直線平行與斜率的關(guān)系,屬于簡單題.對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1),需檢驗不重合;(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.5、C【解析】設(shè),即,再通過函數(shù)的單調(diào)性可知,即可求出的值,得到函數(shù)的解析式,然后根據(jù)零點存在性定理即可判斷零點所在區(qū)間【詳解】設(shè),即,,因為是定義在上的單調(diào)函數(shù),所以由解析式可知,在上單調(diào)遞增而,,故,即因為,,由于,即有,所以故,即的零點所在區(qū)間為故選:C【點睛】本題主要考查函數(shù)單調(diào)性的應(yīng)用,零點存在性定理的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力,屬于較難題6、C【解析】由可得,化簡則,從而可得結(jié)果.【詳解】,,故選C.【點睛】三角函數(shù)求值有三類,(1)“給角求值”:一般所給出的角都是非特殊角,從表面上來看是很難的,但仔細觀察非特殊角與特殊角總有一定關(guān)系,解題時,要利用觀察得到的關(guān)系,結(jié)合公式轉(zhuǎn)化為特殊角并且消除非特殊角的三角函數(shù)而得解.(2)“給值求值”:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系.(3)“給值求角”:實質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,確定角7、C【解析】函數(shù)即為對數(shù)函數(shù),圖象類似的圖象,位于軸的右側(cè),恒過,故選:8、C【解析】根據(jù)條件,變形后,利用均值不等式求最值.【詳解】因為,所以.因為,,所以,當(dāng)且僅當(dāng),時,等號成立,故的最小值為4.故選:C9、B【解析】定性分析即可得到答案【詳解】B、D兩點,橫坐標相同,而D點的縱坐標大于B點的縱坐標,顯然,B點上升階段的水平距離長;A、B兩點,縱坐標相同,而A點的橫坐標小于B點的橫坐標,等經(jīng)過A點的籃球運行到與B點橫坐標相同時,顯然在B點上方,故B點上升階段的水平距離長;同理可知C點路線優(yōu)于A點路線,綜上:P→B→Q是被“蓋帽”的可能性最大的線路.故選:B10、B【解析】由題意可知,P在正視圖中的射影是在C1D1上,AB在正視圖中,在平面CDD1C1上的射影是CD,P的射影到CD的距離是AA1=2,所以三棱錐P﹣ABC的正視圖的面積為三棱錐P﹣ABC的俯視圖的面積的最小值為,所以三棱錐P﹣ABC的正視圖與俯視圖的面積之比的最大值為,故選B點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.二、填空題:本大題共6小題,每小題5分,共30分。11、17【解析】根據(jù)分段函數(shù)解析式計算可得;【詳解】解:因為,故答案為:12、【解析】求出的反函數(shù)即得【詳解】因為函數(shù)的圖象與的圖象關(guān)于對稱,所以是的反函數(shù),的值域是,由得,即,所以故答案為:13、①.②.【解析】當(dāng)時得到,令,再利用定義法證明在上單調(diào)遞減,從而得到,令,,根據(jù)指數(shù)函數(shù)的性質(zhì)得到函數(shù)的單調(diào)性,即可求出的最小值,即可得到的最小值;分別求出與的零點,根據(jù)恰有兩個零點,即可求出的取值范圍;【詳解】解:當(dāng)時,令,,設(shè)且,則因為且,所以,,所以,所以,所以在上單調(diào)遞減,所以,令,,函數(shù)在定義域上單調(diào)遞增,所以,所以的最小值為;對于,令,即,解得,對于,令,即,解得或或,因為fx=ex-1,x≥a-xx2-5x+6,x<a恰有兩個零點,則和一定為的零點,不為的零點,所以,即;故答案為:;;14、【解析】先根據(jù)向量的減法運算求得,再根據(jù)向量垂直的坐標表示,可得關(guān)于的方程,解方程即可求得的值.【詳解】因為向量,,所以則即解得故答案為:【點睛】本題考查了向量垂直的坐標關(guān)系,屬于基礎(chǔ)題.15、【解析】依題意可得恒成立,則,得到一元二次不等式,解得即可;【詳解】解:依題意可得,命題等價于恒成立,故只需要解得,即故答案為:16、【解析】要使函數(shù)有意義,則,解得,函數(shù)的定義域是,故答案為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)或.【解析】(1)先求出,再計算的值,發(fā)現(xiàn),得。(2)先利用向量的坐標表示求出,的坐標,通過,列方程求出?!驹斀狻拷猓海?)證明:由題意可得,,,.(2)向量與的模相等,,.又,,解得,,又或.【點睛】本題考查向量垂直,向量的模的坐標表示,注意計算不要出錯即可。18、(1),;(2)【解析】(1)首先根據(jù)題意得到,,從而得到,(2)根據(jù)題意,當(dāng)時,小球第一次到達最高點,從而得到,再根據(jù)周期為,即可得到.【詳解】(1)因為小球振動過程中最高點與最低點的距離為,所以因為在一次振動中,小球從最高點運動至最低點所用時間為,所以周期為2,即,所以所以,(2)由題意,當(dāng)時,小球第一次到達最高點,以后每隔一個周期都出現(xiàn)一次最高點,因為小球在內(nèi)經(jīng)過最高點的次數(shù)恰為50次,所以因為,所以,所以的取值范圍為(注:的取值范圍不考慮開閉)19、(1);(2)秒【解析】(1)設(shè),根據(jù)題意求得、的值,以及函數(shù)的最小正周期,可求得的值,根據(jù)的大小可得出的值,由此可得出關(guān)于的函數(shù)解析式;(2)由得出,令,求得的取值范圍,進而可解不等式,可得出的取值范圍,進而得解.【詳解】解:(1)如圖所示,標出點M與點N,設(shè),根據(jù)題意可知,,所以,根據(jù)函數(shù)的物理意義可知:,又因為函數(shù)的最小正周期為,所以,所以可得:.(2)根據(jù)題意可知,,即,當(dāng)水輪轉(zhuǎn)動一圈時,,可得:,所以此時,解得:,又因為(秒),即水輪轉(zhuǎn)動任意一圈內(nèi),有秒的時間點P距水面的高度超過2米20、(1)(2)【解析】(1)求出函數(shù)的定義域,利用函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論