2025屆安徽省阜陽三中高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁
2025屆安徽省阜陽三中高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁
2025屆安徽省阜陽三中高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁
2025屆安徽省阜陽三中高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁
2025屆安徽省阜陽三中高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆安徽省阜陽三中高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線左右焦點(diǎn)為,過的直線與雙曲線的右支交于,兩點(diǎn),且,若線段的中垂線過點(diǎn),則雙曲線的離心率為()A.3 B.2C. D.2.?dāng)?shù)列,,,,…的一個(gè)通項(xiàng)公式為()A. B.C. D.3.△ABC兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.4.已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,則下列說法錯(cuò)誤的是()A.數(shù)列一定是等比數(shù)列 B.數(shù)列一定是等差數(shù)列C.數(shù)列一定是等差數(shù)列 D.數(shù)列可能是常數(shù)數(shù)列5.已知數(shù)列滿足,令是數(shù)列的前n項(xiàng)積,,現(xiàn)給出下列四個(gè)結(jié)論:①;②為單調(diào)遞增的等比數(shù)列;③當(dāng)時(shí),取得最大值;④當(dāng)時(shí),取得最大值其中所有正確結(jié)論的編號(hào)為()A.②④ B.①③C.②③④ D.①③④6.已知雙曲線的左、右焦點(diǎn)分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.7.已知雙曲線的左、右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn),為雙曲線在第一象限上的點(diǎn),直線,分別交雙曲線的左,右支于另一點(diǎn),,若,且,則雙曲線的離心率為()A. B.3C.2 D.8.拋物線的準(zhǔn)線方程是()A. B.C. D.9.已知實(shí)數(shù),,則下列不等式恒成立的是()A. B.C. D.10.過點(diǎn)且與橢圓有相同焦點(diǎn)的雙曲線方程為()A B.C. D.11.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.2712.一動(dòng)圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線二、填空題:本題共4小題,每小題5分,共20分。13.已知命題“,”為假命題,則實(shí)數(shù)m的取值范圍為______14.(建三江)函數(shù)在處取得極小值,則=___15.已知函數(shù),則的導(dǎo)函數(shù)______.16.長(zhǎng)方體中,,,已知點(diǎn)H,A,三點(diǎn)共線,且,則點(diǎn)H到平面ABCD的距離為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列通項(xiàng)公式為:,其中.記為數(shù)列的前項(xiàng)和(1)求,;(2)數(shù)列的通項(xiàng)公式為,求的前項(xiàng)和18.(12分)如圖,在四棱錐中,四邊形為正方形,已知平面,且,E為中點(diǎn)(1)證明:平面;(2)證明:平面平面19.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G的方程;(2)過橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.20.(12分)已知是等差數(shù)列,是等比數(shù)列,且(1)求,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)已知命題:,在下面①②中任選一個(gè)作為:,使為真命題,求出實(shí)數(shù)a取值范圍.①關(guān)于x的方程有兩個(gè)不等正根;②.(若選①、選②都給出解答,只按第一個(gè)解答計(jì)分.)22.(10分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點(diǎn),,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由雙曲線的定義得出中各線段長(zhǎng)(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C2、B【解析】根據(jù)給定數(shù)列,結(jié)合選項(xiàng)提供通項(xiàng)公式,將n代入驗(yàn)證法判斷是否為通項(xiàng)公式.【詳解】A:時(shí),排除;B:數(shù)列,,,,…滿足.C:時(shí),排除;D:時(shí),排除;故選:B3、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)椋?,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.4、B【解析】可根據(jù)已知條件,設(shè)出公差為,選項(xiàng)A,可借助等比數(shù)列的定義使用數(shù)列是等差數(shù)列,來進(jìn)行判定;選項(xiàng)B,數(shù)列,可以取,即可判斷;選項(xiàng)C,可設(shè),表示出再進(jìn)行判斷;選項(xiàng)D,可采用換元,令,求得的關(guān)系即可判斷.【詳解】數(shù)列是等差數(shù)列,設(shè)公差為,選項(xiàng)A,數(shù)列是等差數(shù)列,那么為常數(shù),又,則數(shù)列一定是等比數(shù)列,所以選項(xiàng)A正確;選項(xiàng)B,當(dāng)時(shí),數(shù)列不存在,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,數(shù)列是等差數(shù)列,可設(shè)(A、B為常數(shù)),此時(shí),,則為常數(shù),故數(shù)列一定是等差數(shù)列,所以該選項(xiàng)正確;選項(xiàng)D,,則,當(dāng)時(shí),,此時(shí)數(shù)列可能是常數(shù)數(shù)列,故該選項(xiàng)正確.故選:B.5、B【解析】求出,即可判斷選項(xiàng)①正確;求出,即可選項(xiàng)②錯(cuò)誤;求出,利用單調(diào)性即可判斷選項(xiàng)③正確;求出,即可判斷選項(xiàng)④錯(cuò)誤,即得解.【詳解】解:因?yàn)?,①所以,,②①②得,,整理得,又,滿足上式,所以,因?yàn)椋詳?shù)列為等差數(shù)列,公差為,所以,故①正確;,因?yàn)椋蕯?shù)列為等比數(shù)列,其中首項(xiàng),公比為的等比數(shù)列,因?yàn)?,,所以?shù)列為遞減的等比數(shù)列,故②錯(cuò)誤;,因?yàn)闉閱握{(diào)遞增函數(shù),所以當(dāng)最大時(shí),有最大值,因?yàn)?,所以時(shí),最大,即時(shí),取得最大值,故③正確;設(shè),由可得,,解得或,又因?yàn)?,所以時(shí),取得最大值,故④錯(cuò)誤;故選:B6、D【解析】直線的斜率為,計(jì)算,,利用余弦定理得到,化簡(jiǎn)知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點(diǎn)睛】本題考查了雙曲線的漸近線,與圓的關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.7、D【解析】由雙曲線的定義可設(shè),,由平面幾何知識(shí)可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結(jié)合雙曲線性質(zhì)可以得到,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故,對(duì)三角形,用余弦定理,得到,結(jié)合,可得,,,代入上式子中,得到,即,結(jié)合離心率滿足,即可得出,故選:D【點(diǎn)睛】本題考查求雙曲線的離心率,熟記雙曲線的簡(jiǎn)單性質(zhì)即可,屬于??碱}型.8、D【解析】將拋物線的方程化為標(biāo)準(zhǔn)方程,可得出該拋物線的準(zhǔn)線方程.【詳解】拋物線的標(biāo)準(zhǔn)方程為,則,可得,因此,該拋物線的準(zhǔn)線方程為.故選:D.9、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個(gè)選項(xiàng)得到答案.【詳解】當(dāng)時(shí),不等式不成立,錯(cuò)誤;,故錯(cuò)誤正確;當(dāng)時(shí),不等式不成立,錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對(duì)于不等式知識(shí)的綜合應(yīng)用.10、D【解析】設(shè)雙曲線的方程為,再代點(diǎn)解方程即得解.【詳解】解:由得,所以橢圓的焦點(diǎn)為.設(shè)雙曲線的方程為,因?yàn)殡p曲線過點(diǎn),所以.所以雙曲線的方程為.故選:D11、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)公比為,則,解得,又,所以.故選:B.12、C【解析】設(shè)動(dòng)圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關(guān)系式,化簡(jiǎn),再根據(jù)圓錐曲線的定義,可得到動(dòng)圓圓心軌跡.【詳解】設(shè)動(dòng)圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動(dòng)圓圓心軌跡為雙曲線的一支.故選:C【點(diǎn)睛】本題考查了兩圓的位置關(guān)系,圓錐曲線的定義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)命題的否定與原命題真假性相反,即可得到,為真命題,則,從而求出參數(shù)的取值范圍;【詳解】解:因?yàn)槊}“,”為假命題,所以命題“,”為真命題,所以,解得;故答案:14、【解析】由,令,解得或,且時(shí),;時(shí),;時(shí),,所以當(dāng)時(shí),函數(shù)取得極小值考點(diǎn):導(dǎo)數(shù)在函數(shù)中的應(yīng)用;極值的條件15、【解析】利用基本初等函數(shù)的求導(dǎo)公式及積的求導(dǎo)法則計(jì)算作答.【詳解】函數(shù)定義域?yàn)?,則,所以.故答案為:16、【解析】在長(zhǎng)方體中,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,利用已知條件求出點(diǎn)H的坐標(biāo)作答.【詳解】在長(zhǎng)方體中,以點(diǎn)A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,因點(diǎn)H,A,三點(diǎn)共線,令,點(diǎn),則,又,則,解得,所以點(diǎn)到平面ABCD的距離為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2).【解析】(1)驗(yàn)證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯(cuò)位相減法可求得結(jié)果.【小問1詳解】當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.18、(1)證明見解析(2)證明見解析【解析】(1)設(shè)與交于點(diǎn),連結(jié),易證,再利用線面平行的判斷定理即可證得答案;(2)利用線面垂直的判定定理可得平面,再由面面垂直的判斷定理即可.【小問1詳解】連接交于,連接因?yàn)榈酌媸钦叫?,所以為中點(diǎn),因?yàn)樵谥校堑闹悬c(diǎn),所以,因?yàn)槠矫嫫矫?,所以平面【小?詳解】側(cè)棱底面底面,所以,因?yàn)榈酌媸钦叫?,所以,因?yàn)榕c為平面內(nèi)兩條相交直線,所以平面,因?yàn)槠矫?,所以平面平?19、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)椋?,則,即,由,得,.所以,解得,即,所以直線l的方程為.20、(1),;(2).【解析】(1)由,根據(jù)等比數(shù)列的性質(zhì)求得、的值,即可得的通項(xiàng)公式,再根據(jù)列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)結(jié)合(1)可得,根據(jù)錯(cuò)位相減法,利用等比數(shù)列求和公式可得結(jié)果.【詳解】(1)等比數(shù)列的公比,所以,設(shè)等差數(shù)列公差為因?yàn)?,,所以,即所以?)由(1)知,,因此從而數(shù)列的前項(xiàng)和,,,兩式作差可得,,解得.【點(diǎn)睛】本題主要考查等比數(shù)列和等差數(shù)列的通項(xiàng)、等比數(shù)列的求和公式以及錯(cuò)位相減法求數(shù)列的前項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫出“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.21、答案見解析【解析】根據(jù)題意,分析、為真時(shí)的取值范圍,又由復(fù)合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時(shí)由知在上恒成立,∴,即又由q:關(guān)于x的方程有兩個(gè)不等正根,知解得,由為真命題知,解得.實(shí)數(shù)a的取值范圍.選②時(shí)由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當(dāng)且僅當(dāng)時(shí)取“=”號(hào),∴,由為真命題知,解得.實(shí)數(shù)a的取值范圍.22、(1)證明見解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內(nèi)角和可知即,又因?yàn)?,再根?jù)面面垂直的判定定理,即可證明結(jié)果;(2)取BC中點(diǎn)O,由(1)得:平面BCGF,,以O(shè)為原點(diǎn),OB,OH,O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論