湖南省示范名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
湖南省示范名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
湖南省示范名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
湖南省示范名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
湖南省示范名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省示范名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平行六面體中,,,,則()A. B.5C. D.32.已知實(shí)數(shù)a,b,c滿足,,則a,b,c的大小關(guān)系為()A. B.C. D.3.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.74.若存在兩個不相等的正實(shí)數(shù)x,y,使得成立,則實(shí)數(shù)m的取值范圍是()A. B.C. D.5.命題“”的否定是()A. B.C. D.6.隨機(jī)地向兩個標(biāo)號分別為1與2的格子涂色,涂上紅色或綠色,在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為()A. B.C. D.7.已知點(diǎn)、為橢圓的左、右焦點(diǎn),若點(diǎn)為橢圓上一動點(diǎn),則使得的點(diǎn)的個數(shù)為()A. B.C. D.不能確定8.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.9.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.10.已知,若對于且都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.11.工業(yè)生產(chǎn)者出廠價格指數(shù)(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡稱PPI)是反映工業(yè)企業(yè)產(chǎn)品第一次出售時的出廠價格的變化趨勢和變動幅度,是反映某一時期生產(chǎn)領(lǐng)域價格變動情況的重要經(jīng)濟(jì)指標(biāo),也是制定有關(guān)經(jīng)濟(jì)政策和國民經(jīng)濟(jì)核算的重要依據(jù).根據(jù)下面提供的我國2020年1月—2021年11月的工業(yè)生產(chǎn)者出廠價格指數(shù)的月度同比(將上一年同月作為基期進(jìn)行對比的價格指數(shù))和月度環(huán)比(將上月作為基期進(jìn)行對比的價格指數(shù))漲跌情況的折線圖判斷,以下結(jié)論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平12.已知拋物線的焦點(diǎn)為F,過點(diǎn)F分別作兩條直線,直線與拋物線C交于A、B兩點(diǎn),直線與拋物線C交于D、E兩點(diǎn),若與的斜率的平方和為2,則的最小值為()A.24 B.20C.16 D.12二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)是___________.14.已知橢圓的左、右頂點(diǎn)分別為A,B,橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)為橢圓C的下頂點(diǎn),直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設(shè)點(diǎn)P,Q為橢圓C上位于x軸下方的兩點(diǎn),且,求四邊形面積的最大值.15.日常生活中的飲用水通常是經(jīng)過凈化的.隨著水的純凈度的提高,所需凈化費(fèi)用不斷増加.已知將噸水凈化到純凈度為時所需費(fèi)用(單位:元)為.則凈化到純凈度為時所需費(fèi)用的瞬時變化率是凈化到純凈度為時所需費(fèi)用的瞬時變化率的___________倍,這說明,水的純凈度越高,凈化費(fèi)用增加的速度越___________(填“快”或“慢”).16.如圖,按照以下規(guī)律排列的數(shù)陣中,第i行從左向右第j個數(shù)記為,如,,則______;令則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標(biāo)原點(diǎn),、為橢圓C的左、右焦點(diǎn),,P為橢圓C的上頂點(diǎn),以P為圓心且過、的圓與直線相切(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)作直線l,交橢圓C于M,N兩點(diǎn)(l與x軸不重合),在x軸上是否存在一點(diǎn)T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點(diǎn)T的坐標(biāo);若不存在,請說明理由18.(12分)已知等比數(shù)列{an}中,a1=1,且2a2是a3和4a1的等差中項(xiàng).數(shù)列{bn}滿足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an+bn}前n項(xiàng)和Tn.19.(12分)已知函數(shù)R)(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;(2)求的單調(diào)區(qū)間20.(12分)設(shè)數(shù)列的前項(xiàng)和為,,且滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:對一切正整數(shù),有.21.(12分)如圖,AB是半圓O的直徑,C是半圓上一點(diǎn),M是PB的中點(diǎn),平面ABC,且,,.(1)求證:平面PAC;(2)求三棱錐M—ABC體積.22.(10分)已知數(shù)列滿足且(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由,則結(jié)合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.2、A【解析】利用對數(shù)的性質(zhì)可得,,再構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷,再構(gòu)造,利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再由單調(diào)性即可求解.【詳解】由題意可得均大于,因?yàn)?,所以,所以,且,令,,?dāng)時,,所以在單調(diào)遞增,所以,所以,即,令,,當(dāng)時,,所以在上單調(diào)遞減,由,,所以,所以,綜上所述,.故選:A3、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C4、D【解析】將給定等式變形并構(gòu)造函數(shù),由函數(shù)的圖象與垂直于y軸的直線有兩個公共點(diǎn)推理作答.【詳解】因,令,則存在兩個不相等的正實(shí)數(shù)x,y,使得,即存在垂直于y軸的直線與函數(shù)的圖象有兩個公共點(diǎn),,,而,當(dāng)時,,函數(shù)在上單調(diào)遞增,則垂直于y軸的直線與函數(shù)的圖象最多只有1個公共點(diǎn),不符合要求,當(dāng)時,由得,當(dāng)時,,當(dāng)時,,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,令,,令,則,即在上單調(diào)遞增,,即,在上單調(diào)遞增,則有當(dāng)時,,,而函數(shù)在上單調(diào)遞增,取,則,而,因此,存在垂直于y軸的直線(),與函數(shù)的圖象有兩個公共點(diǎn),所以實(shí)數(shù)m的取值范圍是.故選:D【點(diǎn)睛】思路點(diǎn)睛:涉及雙變量的等式或不等式問題,把雙變量的等式或不等式轉(zhuǎn)化為一元變量問題求解,途徑都是構(gòu)造一元函數(shù).5、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結(jié)論進(jìn)行否定即可.【詳解】命題“”的否定是“”.故選:C6、D【解析】根據(jù)古典概型的概率公式即可得出答案.【詳解】在已知其中一個格子顏色為紅色條件下另一個格子顏色有紅色與綠色兩種情況,其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的情況有1種,所以在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為.故選:D.7、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點(diǎn)位于橢圓短軸的頂點(diǎn).因此,滿足條件的點(diǎn)的個數(shù)為.故選:B.8、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A9、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.10、D【解析】根據(jù)題意轉(zhuǎn)化為對于且時,都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時,恒成立,求得的導(dǎo)數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設(shè),可得恒成立,即對于且時,都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當(dāng)時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實(shí)數(shù)取值范圍為.故選:D11、D【解析】根據(jù)折線圖中同比、環(huán)比的正負(fù)情況,結(jié)合各選項(xiàng)的描述判斷正誤.【詳解】A:2020年前5個月PPI在逐月減小,錯誤;B:2020年各月同比為負(fù)值,即低于2019年同期水平,錯誤;C:2021年1月—11月各月的PPI環(huán)比為正值,即逐月增大,錯誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.12、C【解析】設(shè)兩條直線方程,與拋物線聯(lián)立,求出弦長的表達(dá)式,根據(jù)基本不等式求出最小值【詳解】拋物線的焦點(diǎn)坐標(biāo)為,設(shè)直線:,直線:,聯(lián)立得:,所以,所以焦點(diǎn)弦,同理得:,所以,因?yàn)椋?,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式,可知展開式中含的項(xiàng),以及展開式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開式中含的項(xiàng)為,而展開式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.14、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點(diǎn),連接,,設(shè)直線,,.直線方程代入橢圓方程,應(yīng)用韋達(dá)定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計算出四邊形面積得結(jié)論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點(diǎn),連接,,如下圖所示:,∴設(shè)直線,,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對稱性得:,且,,∴四邊形面積的最大值為.15、①.②.快【解析】根據(jù)導(dǎo)數(shù)的概念可知凈化所需費(fèi)用的瞬時變化率即為函數(shù)的一階導(dǎo)數(shù),即先對函數(shù)求導(dǎo),然后將和代入進(jìn)行計算,再求,即可得到結(jié)果,進(jìn)而能夠判斷水的純凈度越高,凈化費(fèi)用增加的速度的快慢【詳解】由題意,可知凈化所需費(fèi)用的瞬時變化率為,所以,,所以,所以凈化到純凈度為時所需費(fèi)用的瞬時變化率是凈化到純凈度為時所需費(fèi)用的瞬時變化率的倍;因?yàn)?,可知水的純凈度越高,凈化費(fèi)用增加的速度越快.故答案為:,快.16、①.55②.【解析】令易知是首項(xiàng)為,公差為1的等差數(shù)列,寫出通項(xiàng)公式,再應(yīng)用累加法求及通項(xiàng)公式,結(jié)合求通項(xiàng)公式,進(jìn)而可得,最后兩次應(yīng)用錯位相減法求即可.【詳解】由題設(shè)知:令,則是首項(xiàng)為,公差為1的等差數(shù)列,故,所以,即,由上可得:,則,而,所以,則,所以,,所以,令,則,所以,故,綜上,,則.故答案為:,.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:通過圖總結(jié)規(guī)律,易知是等差數(shù)列,應(yīng)用累加法求,再由求通項(xiàng)公式,最后應(yīng)用錯位相減法求前n項(xiàng)和.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;.【解析】(1)根據(jù)給定條件求出a,c,b即可作答.(2)聯(lián)立直線l與橢圓C的方程,利用斜率坐標(biāo)公式并結(jié)合韋達(dá)定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標(biāo)準(zhǔn)方程為:【小問2詳解】依題意,設(shè)直線l方程為,由消去x并整理得,設(shè),,則,,假定存在點(diǎn),直線TM與TN的斜率分別為,,,要使為定值,必有,即,當(dāng)時,,,當(dāng)時,,,所以存在點(diǎn),使得直線TM與TN的斜率之積為定值【點(diǎn)睛】方法點(diǎn)睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1);(2).【解析】(1)根據(jù)已知條件求出等比數(shù)列的公比,然后利用等比數(shù)列通項(xiàng)公式求解即可;(2)根據(jù)已知求出數(shù)列的通項(xiàng)公式,再結(jié)合(1)中結(jié)論并利用分組求和法求解即可.【詳解】(1)設(shè)等比數(shù)列公比為q,因?yàn)椋?,因?yàn)槭呛偷牡炔钪许?xiàng),所以,即,解得,所以.故答案為:.(2)因?yàn)椋詾榈炔顢?shù)列,因?yàn)?,,所以公差,?所以.故答案為:.19、(1)(2)答案見解析【解析】(1)根據(jù)切點(diǎn)處的導(dǎo)數(shù)等于切線斜率,切點(diǎn)在曲線上可得切線方程;(2)求導(dǎo),分類討論可得.【小問1詳解】當(dāng)時,,,,則,所以在處的切線方程為【小問2詳解】,,當(dāng)時,,函數(shù)在R上單調(diào)遞增;當(dāng)時,令,則,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增當(dāng)時,的單調(diào)遞增區(qū)間為,當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為20、(1),;(2)證明見解析.【解析】(1)利用關(guān)系可得,根據(jù)等比數(shù)列的定義易知為等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式;(2)由,將不等式左側(cè)放縮,即可證結(jié)論.【小問1詳解】當(dāng)時,,,兩式相減得:,整理可得:,而,所以是首項(xiàng)為2,公比為1的等比數(shù)列,故,即,.【小問2詳解】,..21、(1)證明見解析(2)2【解析】(1)依題意可得,再由平面,得到,即可證明平面;(2)連接,可證,即可得到平面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論