下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
【成才之路】-學(xué)年高中數(shù)學(xué)1.3.2奇偶性第2課時(shí)習(xí)題課課后強(qiáng)化作業(yè)新人教A版必修1一、選擇題1.(·全國(guó)高考卷Ⅰ)設(shè)函數(shù)f(x)、g(x)定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論正確的是()A.f(x)g(x)是偶函數(shù) B.|f(x)|g(x)是奇函數(shù)C.f(x)|g(x)|是奇函數(shù) D.|f(x)·g(x)|是奇函數(shù)[答案]C[解析]設(shè)h(x)=f(x)g(x),則h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(huán)(x),∴h(x)是奇函數(shù),故A錯(cuò),同理可知B、D錯(cuò),C正確.2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是()A.f(x)=x+eq\f(1,x) B.f(x)=x2-eq\f(1,x)C.f(x)=eq\r(1-x2) D.f(x)=x3[答案]D[解析]∵對(duì)于A,f(-x)=(-x)+eq\f(1,-x)=-(x+eq\f(1,x))=-f(x);對(duì)于D,f(-x)=(-x)3=-x3=-f(x),∴A、D選項(xiàng)都是奇函數(shù).易知f(x)=x3在(0,1)上遞增.3.已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x,則f(x)上的表達(dá)式為()A.y=x(x-2) B.y=x(|x|+2)C.y=|x|(x-2) D.y=x(|x|-2)[答案]D[解析]當(dāng)x<0時(shí),-x>0,∴f(-x)=x2+2x.又f(x)是奇函數(shù),∴f(x)=-f(-x)=-x2-2x.∴f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2-2x,x≥0,,-x2-2x,x<0.))∴f(x)=x(|x|-2).故選D.4.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=af(x)+bg(x)+2在區(qū)間(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值為()A.-5 B.-1C.-3 D.5[答案]B[解析]解法一:令F(x)=h(x)-2=af(x)+bg(x),則F(x)為奇函數(shù).∵x∈(0,+∞)時(shí),h(x)≤5,∴x∈(0,+∞)時(shí),F(xiàn)(x)=h(x)-2≤3.又x∈(-∞,0)時(shí),-x∈(0,+∞),∴F(-x)≤3?-F(x)≤3?F(x)≥-3.∴h(x)≥-3+2=-1,選B.5.函數(shù)y=f(x)對(duì)于任意x,y∈R,有f(x+y)=f(x)+f(y)-1,當(dāng)x>0時(shí),f(x)>1,且f(3)=4,則()A.f(x)在R上是減函數(shù),且f(1)=3B.f(x)在R上是增函數(shù),且f(1)=3C.f(x)在R上是減函數(shù),且f(1)=2D.f(x)在R上是增函數(shù),且f(1)=2[答案]D[解析]設(shè)任意x1,x2∈R,x1<x2,f(x2)-f(x1)=f((x2-x1)+x1)-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1.∵x2-x1>0,又已知當(dāng)x>0時(shí),f(x)>1,∴f(x2-x1)>1.∴f(x2)-f(x1)>0,即f(x1)<f(x2).∴f(x)在R上是增函數(shù).∵f(3)=f(1+2)=f(1)+f(2)-1=f(1)+[f(1)+f(1)-1]-1=3f(1)-2=4,∴f6.(~膠州三中高一模塊測(cè)試)設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式eq\f(fx-f-x,x)<0的解集為()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)[答案]D[解析]奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,eq\f(fx-f-x,x)=eq\f(2fx,x)<0.由函數(shù)的圖象得解集為(-1,0)∪(0,1).二、填空題7.(~上海大學(xué)附中高一期末考試)設(shè)函數(shù)f(x)=eq\f(x+1x+a,x)為奇函數(shù),則a=________.[答案]-1[解析]f(x)=eq\f(1,x)(x+1)(x+a)為奇函數(shù)?g(x)=(x+1)(x+a)為偶函數(shù),故g(-1)=g(1),∴a=-1.8.(~山東冠縣武訓(xùn)中學(xué)月考試題)對(duì)于函數(shù)f(x),定義域?yàn)镈=[-2,2]以下命題正確的是________(只填命題序號(hào))①若f(-1)=f(1),f(-2)=f(2),則y=f(x)在D上為偶函數(shù)②若f(-1)<f(0)<f(1)<f(2),則y=f(x)在D上為增函數(shù)③若對(duì)于x∈[-2,2],都有f(-x)+f(x)=0,則y=f(x)在D上是奇函數(shù)④若函數(shù)y=f(x)在D上具有單調(diào)性且f(0)>f(1)則y=f(x)在D上是遞減函數(shù)[答案]③④[解析]顯然①②不正確,③④正確.9.偶函數(shù)f(x)在(0,+∞)上為增函數(shù),若x1<0,x2>0,且|x1|>|x2|,則f(x1)與f(x2)的大小關(guān)系是______.[答案]f(x1)>f(x2)[解析]∵x1<0,∴-x1>0,又|x1|>|x2|,x2>0,∴-x1>x2>0,∵f(x)在(0,+∞)上為增函數(shù),∴f(-x1)>f(x2),又∵f(x)為偶函數(shù),∴f(x1)>f(x2).此類(lèi)問(wèn)題利用奇偶函數(shù)的對(duì)稱(chēng)特征畫(huà)出示意圖一目了然.三、解答題10.設(shè)函數(shù)f(x)=eq\f(ax2+1,bx+c)是奇函數(shù)(a、b、c∈Z),且f(1)=2,f(2)<3,求a、b、c的值.[解析]由條件知f(-x)+f(x)=0,∴eq\f(ax2+1,bx+c)+eq\f(ax2+1,c-bx)=0,∴c=0又f(1)=2,∴a+1=2b,∵f(2)<3,∴eq\f(4a+1,2b)<3,∴eq\f(4a+1,a+1)<3,解得:-1<a<2,∴a=0或1,∴b=eq\f(1,2)或1,由于b∈Z,∴a=1,b=1,c=0.11.已知函數(shù)f(x)=x2+eq\f(a,x)(x≠0,常數(shù)a∈R).(1)討論函數(shù)f(x)的奇偶性,并說(shuō)明理由;(2)若函數(shù)f(x)在[2,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.[分析](1)題需分情況討論.(2)題用定義證明即可.[解析](1)當(dāng)a=0時(shí),f(x)=x2,對(duì)任意x∈(-∞,0)∪(0,+∞),f(-x)=(-x)2=x2=f(x).∴f(x)為偶函數(shù).當(dāng)a≠0時(shí),f(x)=x2+eq\f(a,x)(a≠0,x≠0),取x=±1,得f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a即f(-1)≠-f(1),f(-1)≠f(1),∴函數(shù)f(x)既不是奇函數(shù),也不是偶函數(shù).(2)設(shè)2≤x1<x2,則有f(x1)-f(x2)=xeq\o\al(2,1)+eq\f(a,x1)-xeq\o\al(2,2)-eq\f(a,x2)=eq\f(x1-x2,x1x2)·[x1x2(x1+x2)-a],要使函數(shù)f(x)在[2,+∞)上為增函數(shù),則需f(x1)-f(x2)<0恒成立.∵x1-x2<0,x1x2>4,∴只需使a<x1x2(x1+x2)恒成立.又∵x1+x2>4,∴x1x2(x1+x2)>16,故a的取值范圍是(-∞,16].12.已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時(shí),f(x)>0,且f(x·y)=f(x)+f(y).(1)求f(1);(2)證明f(x)在定義域上是增函數(shù);(3)如果f(eq\f(1,3))=-1,求滿(mǎn)足不等式f(x)-f(x-2)≥2的x的取值范圍.[分析](1)的求解是容易的;對(duì)于(2),應(yīng)利用單調(diào)性定義來(lái)證明,其中應(yīng)注意f(x·y)=f(x)+f(y)的應(yīng)用;對(duì)于(3),應(yīng)利用(2)中所得的結(jié)果及f(x·y)=f(x)+f(y)進(jìn)行適當(dāng)配湊,將所給不等式化為f[g(x)]≥f(a)的形式,再利用f(x)的單調(diào)性來(lái)求解.[解析](1)令x=y(tǒng)=1,得f(1)=2f(1),故f(2)證明:令y=eq\f(1,x),得f(1)=f(x)+f(eq\f(1,x))=0,故f(eq\f(1,x))=-f(x).任取x1,x2∈(0,+∞),且x1<x2,則f(x2)-f(x1)=f(x2)+f(eq\f(1,x1))=f(eq\f(x2,x1)).由于eq\f(x2,x1)>1,故f(eq\f(x2,x1))>0,從而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函數(shù).(3)由于f(eq\f(1,3))=-1,而f(eq\f(1,3))=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y(tǒng)=3,得f(9)=f(3)+f(3)=2.故所給不等式可化為f(x)-f(x-2)≥f(9),∴f(x)≥f[9(x-2)],∴x≤eq\f(9,4),又eq\b\lc\{\rc\(\a\vs4\al\co1(x>0,x-2>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 靈活應(yīng)對(duì)市場(chǎng)波動(dòng)的管理策略與案例計(jì)劃
- 風(fēng)險(xiǎn)投資主體合同三篇
- 培訓(xùn)學(xué)生合同范本
- 市場(chǎng)營(yíng)銷(xiāo)與品牌建設(shè)的結(jié)合計(jì)劃
- 營(yíng)銷(xiāo)活動(dòng)策劃書(shū)計(jì)劃
- 吉林省白山市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)人教版小升初模擬(下學(xué)期)試卷及答案
- 合同價(jià)下浮合同范本
- 工程價(jià)款合同范本
- 騎行活動(dòng)合同范本
- 通告合同范本
- 2024-2030年中國(guó)少女內(nèi)衣市場(chǎng)營(yíng)銷(xiāo)規(guī)模及未來(lái)銷(xiāo)售趨勢(shì)研究報(bào)告
- 2024秋人教版一年級(jí)數(shù)學(xué)上冊(cè)《11-20的認(rèn)識(shí)》教學(xué)設(shè)計(jì)
- 油漆作業(yè)風(fēng)險(xiǎn)和隱患辨識(shí)、評(píng)估分級(jí)與控制措施一覽表
- 空氣栓塞培訓(xùn)課件
- 數(shù)據(jù)治理與數(shù)據(jù)中臺(tái)建設(shè)方案
- HG∕T 5248-2017 風(fēng)力發(fā)電機(jī)組葉片用環(huán)氧結(jié)構(gòu)膠粘劑
- 醫(yī)院感染監(jiān)測(cè)標(biāo)準(zhǔn)考試試題附有答案
- 高血壓病三級(jí)預(yù)防策略 醫(yī)學(xué)類(lèi)模板 醫(yī)學(xué)課件
- DL∕T 523-2017 化學(xué)清洗緩蝕劑應(yīng)用性能評(píng)價(jià)指標(biāo)及試驗(yàn)方法
- 無(wú)人機(jī)應(yīng)用技術(shù)專(zhuān)業(yè)申報(bào)表
- 食品營(yíng)養(yǎng)學(xué)選擇試題庫(kù)(附參考答案)
評(píng)論
0/150
提交評(píng)論