版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省哈爾濱道外區(qū)四校聯(lián)考2024屆中考數(shù)學模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤12.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時 B.7海里/時 C.7海里/時 D.28海里/時3.下列計算正確的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a?a2=a24.如圖,四邊形ABCD內接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.5.等腰三角形三邊長分別為,且是關于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或106.近似數(shù)精確到()A.十分位 B.個位 C.十位 D.百位7.如圖,已知點A(0,1),B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸的正半軸于點C,則∠BAC等于()A.90° B.120° C.60° D.30°8.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A、B的坐標分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為()A. B. C. D.9.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣1610.這個數(shù)是()A.整數(shù) B.分數(shù) C.有理數(shù) D.無理數(shù)二、填空題(共7小題,每小題3分,滿分21分)11.袋中裝有一個紅球和二個黃球,它們除了顏色外都相同,隨機從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機摸出一球,兩次都摸到紅球的概率是_____.12.已知:a(a+2)=1,則a2+=_____.13.如圖,直線與x軸、y軸分別交于點A、B;點Q是以C(0,﹣1)為圓心、1為半徑的圓上一動點,過Q點的切線交線段AB于點P,則線段PQ的最小是______.14.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.15.一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,從中任意摸出一個球恰好是紅球的概率是____.16.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于__________.17.如圖,某數(shù)學興趣小組將邊長為4的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形DAB的面積為__________.三、解答題(共7小題,滿分69分)18.(10分)中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內容豐富.某班模擬開展“中國詩詞大賽”比賽,對全班同學成績進行統(tǒng)計后分為“A優(yōu)秀”、“B一般”、“C較差”、“D良好”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖.請結合統(tǒng)計圖中的信息,回答下列問題:(1)本班有多少同學優(yōu)秀?(2)通過計算補全條形統(tǒng)計圖.(3)學校預全面推廣這個比賽提升學生的文化素養(yǎng),估計該校3000人有多少人成績良好?19.(5分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.20.(8分)如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高(1)△ACD與△ABC相似嗎?為什么?(2)AC2=AB?AD成立嗎?為什么?21.(10分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數(shù)y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.22.(10分)如圖1,是一個材質均勻可自由轉動的轉盤,轉盤的四個扇形面積相等,分別有數(shù)字1,2,3,1.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每轉動轉盤一次,當轉盤停止運動時,指針所落扇形中的數(shù)字是幾(當指針落在四個扇形的交線上時,重新轉動轉盤),就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖A起跳,第一次指針所落扇形中的數(shù)字是3,就順時針連線跳3個邊長,落到圈D;若第二次指針所落扇形中的數(shù)字是2,就從D開始順時針續(xù)跳2個邊長,落到圈B;……設游戲者從圈A起跳.(1)嘉嘉隨機轉一次轉盤,求落回到圈A的概率P1;(2)琪琪隨機轉兩次轉盤,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?23.(12分)如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數(shù)和一次函數(shù)的解析式.若一次函數(shù)的圖象與x軸相交于點C,求∠ACO的度數(shù).結合圖象直接寫出:當>>0時,x的取值范圍.24.(14分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),根據(jù)根的判別式以及根與系數(shù)的關系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關鍵是利用兩個函數(shù)的解析式構成方程,再利用一元二次方程的根與系數(shù)的關系求解.2、A【解析】試題解析:設貨船的航行速度為海里/時,小時后貨船在點處,作于點.由題意海里,海里,在中,所以在中,所以所以解得:故選A.3、C【解析】
解:選項A,原式=;選項B,原式=a3;選項C,原式=-2a+2=2-2a;選項D,原式=故選C4、C【解析】
根據(jù)平行四邊形的性質和圓周角定理可得出答案.【詳解】根據(jù)平行四邊形的性質可知∠B=∠AOC,根據(jù)圓內接四邊形的對角互補可知∠B+∠D=180°,根據(jù)圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點睛】該題主要考查了圓周角定理及其應用問題;應牢固掌握該定理并能靈活運用.5、B【解析】
由題意可知,等腰三角形有兩種情況:當a,b為腰時,a=b,由一元二次方程根與系數(shù)的關系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B6、C【解析】
根據(jù)近似數(shù)的精確度:近似數(shù)5.0×102精確到十位.故選C.考點:近似數(shù)和有效數(shù)字7、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點睛:本題考查了垂徑定理的應用,關鍵是求出AC、OA的長.解題時注意:垂直弦的直徑平分這條弦,并且平分弦所對的兩條?。?、B【解析】
連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),
故選B.【點睛】本題考查翻折變換、坐標與圖形的性質、等邊三角形的判定和性質、銳角三角函數(shù)等知識,解題的關鍵是發(fā)現(xiàn)特殊三角形,利用特殊三角形解決問題.9、B【解析】
先把原式化為2x÷22y×23的形式,再根據(jù)同底數(shù)冪的乘法及除法法則進行計算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點睛】本題考查的是同底數(shù)冪的乘法及除法運算,根據(jù)題意把原式化為2x÷22y×23的形式是解答此題的關鍵.10、D【解析】
由于圓周率π是一個無限不循環(huán)的小數(shù),由此即可求解.【詳解】解:實數(shù)π是一個無限不循環(huán)的小數(shù).所以是無理數(shù).
故選D.【點睛】本題主要考查無理數(shù)的概念,π是常見的一種無理數(shù)的形式,比較簡單.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到紅球的有1種結果,所以兩次都摸到紅球的概率是,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.12、3【解析】
先根據(jù)a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點睛】本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關鍵.13、【解析】解:過點C作CP⊥直線AB于點P,過點P作⊙C的切線PQ,切點為Q,此時PQ最小,連接CQ,如圖所示.當x=0時,y=3,∴點B的坐標為(0,3);當y=0時,x=4,∴點A的坐標為(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC?sinB=.∵PQ為⊙C的切線,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案為.14、1【解析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.15、.【解析】
根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大小.【詳解】∵一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,∴從中任意摸出一個球恰好是紅球的概率為:,故答案為.【點睛】本題考查了概率公式的應用.注意概率=所求情況數(shù)與總情況數(shù)之比.16、3【解析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設每個小正方形的邊長為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點:解直角三角形.17、【解析】
設扇形的圓心角為n°,則根據(jù)扇形的弧長公式有:,解得所以三、解答題(共7小題,滿分69分)18、(1)本班有4名同學優(yōu)秀;(2)補圖見解析;(3)1500人.【解析】
(1)根據(jù)統(tǒng)計圖即可得出結論;(2)先計算出優(yōu)秀的學生,再補齊統(tǒng)計圖即可;(3)根據(jù)圖2的數(shù)值計算即可得出結論.【詳解】(1)本班有學生:20÷50%=40(名),本班優(yōu)秀的學生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同學優(yōu)秀;(2)成績一般的學生有:40×30%=12(名),成績優(yōu)秀的有4名同學,補全的條形統(tǒng)計圖,如圖所示;(3)3000×50%=1500(名),答:該校3000人有1500人成績良好.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的知識點.19、(1)畫圖見解析;(2)畫圖見解析;(3).【解析】
(1)直接利用直角三角形的性質結合勾股定理得出符合題意的圖形;(2)根據(jù)矩形的性質畫出符合題意的圖形;
(3)根據(jù)題意利用勾股定理得出結論.【詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據(jù)勾股定理得EM=.【點睛】本題考查了勾股定理與作圖,解題的關鍵是熟練的掌握直角三角形的性質與勾股定理.20、(1)△ACD與△ABC相似;(2)AC2=AB?AD成立.【解析】
(1)求出∠ADC=∠ACB=90°,根據(jù)相似三角形的判定推出即可;(2)根據(jù)相似三角形的性質得出比例式,再進行變形即可.【詳解】解:(1)△ACD與△ABC相似,理由是:∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB?AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB?AD.【點睛】本題考查了相似三角形的性質和判定,能根據(jù)相似三角形的判定定理推出△ACD∽△ABC是解此題的關鍵.21、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】
(1)利用反比例函數(shù)圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數(shù)法即可求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷即可;(3)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據(jù)三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數(shù)圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次(反比例)函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關鍵是:(1)根據(jù)點的坐標利用待定系數(shù)法求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷不等式取值范圍;(3)根據(jù)三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.22、(1)落回到圈A的概率P1=;(2)她與嘉嘉落回到圈A的可能性一樣.【解析】
(1)由共有1種等可能的結果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結果與最后落回到圈A的情況,再利用概率公式求解即可求得答案;【詳解】(1)∵共有1種等可能的結果,落回到圈A的只有1種情況,∴落回到圈A的概率P1=;(2)列表得:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)∵共有16種等可能的結果,最后落回到圈A的有(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高考數(shù)學全真模擬試題第12571期
- 江蘇省徐州市銅山區(qū)2023-2024學年九年級上學期期中物理試卷(含答案解析)
- 2024至2030年中國早茶點心車數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國手動平移氣調庫門行業(yè)投資前景及策略咨詢研究報告
- 2010-2012年非離子表面活性劑市場研究及預測分析報告
- 2024至2030年中國塑料馬甲袋數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國單筒紫外線凈水器數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國沖孔新型板數(shù)據(jù)監(jiān)測研究報告
- 2024年新疆維吾爾自治區(qū)中考語文試題含解析
- 2024年中國鏡架配件市場調查研究報告
- DB23T 3842-2024 一般化工企業(yè)安全生產標準化評定規(guī)范
- 期中模擬押題卷(1-3單元)(試題)-2024-2025學年蘇教版數(shù)學六年級上冊
- 環(huán)氧樹脂項目可行性研究報告項目報告
- 阜陽職業(yè)技術學院2024年教師招聘招聘歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 北京市海淀區(qū)2024學年七年級上學期語文期中試卷【含參考答案】
- 2024-2025學年人教版數(shù)學三年級上冊 第三單元 測量 單元測試卷(含答案)
- 2024新信息科技三年級第四單元:創(chuàng)作數(shù)字作品大單元整體教學設計
- 第一單元達標練習(單元練習)-2024-2025學年語文一年級上冊(統(tǒng)編版)
- 2024年水電暖安裝合同模板
- TBIA 22-2024 骨科疾病診療數(shù)據(jù)集-頸椎退行性疾病
- 考研英語模擬試題一
評論
0/150
提交評論