河北省隆堯縣聯(lián)考2024屆中考數(shù)學(xué)仿真試卷含解析_第1頁
河北省隆堯縣聯(lián)考2024屆中考數(shù)學(xué)仿真試卷含解析_第2頁
河北省隆堯縣聯(lián)考2024屆中考數(shù)學(xué)仿真試卷含解析_第3頁
河北省隆堯縣聯(lián)考2024屆中考數(shù)學(xué)仿真試卷含解析_第4頁
河北省隆堯縣聯(lián)考2024屆中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河北省隆堯縣聯(lián)考2024屆中考數(shù)學(xué)仿真試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.2.已知關(guān)于的方程,下列說法正確的是A.當(dāng)時,方程無解B.當(dāng)時,方程有一個實數(shù)解C.當(dāng)時,方程有兩個相等的實數(shù)解D.當(dāng)時,方程總有兩個不相等的實數(shù)解3.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.104.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對5.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°6.計算:的結(jié)果是()A. B.. C. D.7.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°8.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形9.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>310.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標(biāo)系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.11.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.12.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組的解集是_____________.14.如圖,拋物線交軸于,兩點,交軸于點,點關(guān)于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.15.4的平方根是.16.在一次射擊比賽中,某運動員前7次射擊共中62環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第8次射擊他至少要打出_____環(huán)的成績.17.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.18.如圖,在四邊形ABCD中,對角線AC,BD交于點O,OA=OC,OB=OD,添加一個條件使四邊形ABCD是菱形,那么所添加的條件可以是___________(寫出一個即可).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.20.(6分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.21.(6分)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過點,AB⊥x軸于點B,點C與點A關(guān)于原點O對稱,CD⊥x軸于點D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經(jīng)過點C,且與x軸,y軸的交點分別為點E,F(xiàn),當(dāng)時,求點F的坐標(biāo).22.(8分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標(biāo)為(3,0),經(jīng)過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.23.(8分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點A在x軸上,點B在y軸上,點在二次函數(shù)的圖像上.(1)求二次函數(shù)的表達式;(2)求點A,B的坐標(biāo);(3)把△ABC沿x軸正方向平移,當(dāng)點B落在拋物線上時,求△ABC掃過區(qū)域的面積.24.(10分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.25.(10分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.26.(12分)如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;在圖2中畫出線段AB的垂直平分線.27.(12分)某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:銷售單價(元)x銷售量y(件)銷售玩具獲得利潤w(元)(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最小;故選A.【點睛】此題考負(fù)數(shù)的大小比較,應(yīng)理解數(shù)字大的負(fù)數(shù)反而?。?、C【解析】當(dāng)時,方程為一元一次方程有唯一解.當(dāng)時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當(dāng)時,方程有兩個相等的實數(shù)解,當(dāng)且時,方程有兩個不相等的實數(shù)解.綜上所述,說法C正確.故選C.3、D【解析】

根據(jù)有理數(shù)乘法法則計算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點睛】考查了有理數(shù)的乘法法則,(1)兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(2)任何數(shù)同0相乘,都得0;(3)幾個不等于0的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;(4)幾個數(shù)相乘,有一個因數(shù)為0時,積為0.4、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.5、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質(zhì);三角形的外角的性質(zhì).6、B【解析】

根據(jù)分式的運算法則即可求出答案.【詳解】解:原式===故選;B【點睛】本題考查分式的運算法則,解題關(guān)鍵是熟練運用分式的運算法則,本題屬于基礎(chǔ)題型.7、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關(guān)矩形折疊的問題,熟悉“矩形的四個內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.8、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯誤.

故選D.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.9、B【解析】試題分析:觀察圖象可知,拋物線y=x2+bx+c與x軸的交點的橫坐標(biāo)分別為(﹣1,0)、(1,0),所以當(dāng)y<0時,x的取值范圍正好在兩交點之間,即﹣1<x<1.故選B.考點:二次函數(shù)的圖象.10614410、D【解析】

根據(jù)圖象可設(shè)二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據(jù)實際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.11、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當(dāng)點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當(dāng)點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點睛】本題考查動點問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點Q在AP、DC上這兩種情況.12、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式組的解集是x<-1.故答案是:x<-1.14、【解析】

根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4)、作點E關(guān)于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關(guān)于對稱軸的對稱點E的坐標(biāo)為(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4),作點E關(guān)于x軸的對稱點E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點睛】本題主要考查拋物線的性質(zhì)以及兩點間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.15、±1.【解析】試題分析:∵,∴4的平方根是±1.故答案為±1.考點:平方根.16、8【解析】為了使第8次的環(huán)數(shù)最少,可使后面的2次射擊都達到最高環(huán)數(shù),即10環(huán).設(shè)第8次射擊環(huán)數(shù)為x環(huán),根據(jù)題意列出一元一次不等式62+x+2×10>89解之,得x>7x表示環(huán)數(shù),故x為正整數(shù)且x>7,則x的最小值為8即第8次至少應(yīng)打8環(huán).點睛:本題考查的是一元一次不等式的應(yīng)用.解決此類問題的關(guān)鍵是在理解題意的基礎(chǔ)上,建立與之相應(yīng)的解決問題的“數(shù)學(xué)模型”——不等式,再由不等式的相關(guān)知識確定問題的答案.17、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解析】

(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【點睛】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.18、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四邊形ABCD是平行四邊形,再根據(jù)菱形的判定定理添加鄰邊相等或?qū)蔷€垂直即可判定該四邊形是菱形.所以添加條件AB=AD或BC=CD或AC⊥BD,本題答案不唯一,符合條件即可.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.20、(1)-7;(2),.【解析】

(1)原式第一項利用算術(shù)平方根定義計算,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結(jié)果;

(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,利用非負(fù)數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當(dāng)x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點睛】本題考查了實數(shù)的運算、非負(fù)數(shù)的性質(zhì)與分式的化簡求值,解題的關(guān)鍵是熟練的掌握實數(shù)的運算、非負(fù)數(shù)的性質(zhì)與分式的化簡求值的運用.21、(1)m=8,n=-2;(2)點F的坐標(biāo)為,【解析】分析:(1)利用三角形的面積公式構(gòu)建方程求出n,再利用待定系數(shù)法求出m的的值即可;(2)分兩種情形分別求解如①圖,當(dāng)k<0時,設(shè)直線y=kx+b與x軸,y軸的交點分別為,.②圖中,當(dāng)k>0時,設(shè)直線y=kx+b與x軸,y軸的交點分別為點,.詳解:(1)如圖②∵點A的坐標(biāo)為,點C與點A關(guān)于原點O對稱,∴點C的坐標(biāo)為.∵AB⊥x軸于點B,CD⊥x軸于點D,∴B,D兩點的坐標(biāo)分別為,.∵△ABD的面積為8,,∴.解得.∵函數(shù)()的圖象經(jīng)過點,∴.(2)由(1)得點C的坐標(biāo)為.①如圖,當(dāng)時,設(shè)直線與x軸,y軸的交點分別為點,.由CD⊥x軸于點D可得CD∥.∴△CD∽△O.∴.∵,∴.∴.∴點的坐標(biāo)為.②如圖,當(dāng)時,設(shè)直線與x軸,y軸的交點分別為點,.同理可得CD∥,.∵,∴為線段的中點,.∴.∴點的坐標(biāo)為.綜上所述,點F的坐標(biāo)為,.點睛:本題考查了反比例函數(shù)綜合題、一次函數(shù)的應(yīng)用、三角形的面積公式等知識,解題的關(guān)鍵是會用方程的思想思考問題,會用分類討論的思想思考問題,屬于中考壓軸題.22、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】

(1)把點B和D的坐標(biāo)代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標(biāo),設(shè)直線AD的解析式為y=kx+a,把A和D的坐標(biāo)代入得出方程組,解方程組即可;(2)分兩種情況:①當(dāng)a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當(dāng)a>-1時,顯然F應(yīng)在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),代入拋物線解析式,即可得出結(jié)果.【詳解】解:(1)把點B和D的坐標(biāo)代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當(dāng)y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設(shè)直線AD的解析式為y=kx+a,把A和D的坐標(biāo)代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當(dāng)a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當(dāng)a>-1時,顯然F應(yīng)在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【點睛】本題考查拋物線與x軸的交點;二次函數(shù)的性質(zhì);待定系數(shù)法求二次函數(shù)解析式及平行四邊形的判定,綜合性較強.23、(1);(2);(3).【解析】

(1)將點代入二次函數(shù)解析式即可;(2)過點作軸,證明即可得到即可得出點A,B的坐標(biāo);(3)設(shè)點的坐標(biāo)為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過掃過區(qū)域的面積=代入計算即可.【詳解】解:(1)∵點在二次函數(shù)的圖象上,.解方程,得∴二次函數(shù)的表達式為.(2)如圖1,過點作軸,垂足為..,.在和中,∵,.∵點的坐標(biāo)為,..(3)如圖2,把沿軸正方向平移,當(dāng)點落在拋物線上點處時,設(shè)點的坐標(biāo)為.解方程得:(舍去)或由平移的性質(zhì)知,且,∴四邊形為平行四邊形,.掃過區(qū)域的面積==.【點睛】本題考查了二次函數(shù)與幾何綜合問題,涉及全等三角形的判定與性質(zhì),平行四邊形的性質(zhì)與判定,勾股定理解直角三角形,解題的關(guān)鍵是靈活運用二次函數(shù)的性質(zhì)與幾何的性質(zhì).24、(1)作圖見解析;(2)證明見解析;【解析】

(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據(jù)相似三角形的性質(zhì)得到結(jié)論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質(zhì).25、(1)見解析;(2)12【解析】

(1)連接OC、BC,根據(jù)題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結(jié)論.(2)先根據(jù)題意證明出△PBC∽△PCA,再根據(jù)相似三角形的性質(zhì)得出邊的比值,由此可得出結(jié)論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論