安徽省天長市2024-2025學年高三數(shù)學試題3月24日第4周測試題含解析_第1頁
安徽省天長市2024-2025學年高三數(shù)學試題3月24日第4周測試題含解析_第2頁
安徽省天長市2024-2025學年高三數(shù)學試題3月24日第4周測試題含解析_第3頁
安徽省天長市2024-2025學年高三數(shù)學試題3月24日第4周測試題含解析_第4頁
安徽省天長市2024-2025學年高三數(shù)學試題3月24日第4周測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省天長市2024-2025學年高三數(shù)學試題3月24日第4周測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.2.復數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i3.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.24.若為純虛數(shù),則z=()A. B.6i C. D.205.已知,,由程序框圖輸出的為()A.1 B.0 C. D.6.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.7.設集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}8.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.9.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.10.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.411.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,1812.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則關于的不等式的解集為_______.14.如圖,直線平面,垂足為,三棱錐的底面邊長和側棱長都為4,在平面內,是直線上的動點,則點到平面的距離為_______,點到直線的距離的最大值為_______.15.函數(shù)的定義域是.16.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,平面,,,分別為,的中點.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.18.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.19.(12分)某企業(yè)原有甲、乙兩條生產線,為了分析兩條生產線的效果,先從兩條生產線生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值.該項指標值落在內的產品視為合格品,否則為不合格品.乙生產線樣本的頻數(shù)分布表質量指標合計頻數(shù)2184814162100(1)根據(jù)甲生產線樣本的頻率分布直方圖,以從樣本中任意抽取一件產品且為合格品的頻率近似代替從甲生產線生產的產品中任意抽取一件產品且為合格品的概率,估計從甲生產線生產的產品中任取5件恰有2件為合格品的概率;(2)現(xiàn)在該企業(yè)為提高合格率欲只保留其中一條生產線,根據(jù)上述圖表所提供的數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%把握認為該企業(yè)生產的這種產品的質量指標值與生產線有關?若有90%把握,請從合格率的角度分析保留哪條生產線較好?甲生產線乙生產線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87920.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數(shù)精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學期望.附:(1)相關系數(shù)(2),,,.21.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.2.B【解析】

復數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.本題考查復數(shù)的分類,屬于基礎題.3.A【解析】

求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.4.C【解析】

根據(jù)復數(shù)的乘法運算以及純虛數(shù)的概念,可得結果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.本題考查復數(shù)的概念與運算,屬基礎題.5.D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.6.D【解析】

設出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數(shù)法;⑤待定系數(shù)法7.C【解析】

先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.本題主要考查集合的交集運算,屬于基礎題.8.C【解析】

令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉化,考查推理能力,屬于中等題.9.A【解析】

函數(shù)的零點就是方程的解,設,方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.本題考查復合函數(shù)的零點.考查轉化與化歸思想,函數(shù)零點轉化為方程的解,方程的解再轉化為研究函數(shù)的性質,本題考查了學生分析問題解決問題的能力.10.A【解析】

先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數(shù),當時,,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.11.A【解析】

利用統(tǒng)計圖結合分層抽樣性質能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎題,解題時要認真審題,注意統(tǒng)計圖的性質的合理運用.12.C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.本題考查中位數(shù)的計算,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

判斷的奇偶性和單調性,原不等式轉化為,運用單調性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調遞增,,即,∴∴,即x>故答案為:本題考查函數(shù)的奇偶性和單調性的運用:解不等式,考查轉化思想和運算能力,屬于中檔題.14.【解析】

三棱錐的底面邊長和側棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點到平面的距離;,可得點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑,即可求出結論.【詳解】邊長為,則中線長為,點到平面的距離為,點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑.又三棱錐的底面邊長和側棱長都為4,以下求過和的兩個平行平面間距離,分別取中點,連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.本題考查空間中的距離、正四面體的結構特征,考查空間想象能力,屬于較難題.15.【解析】解:因為,故定義域為16.60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)詳見解析;(2).【解析】

(1)連接,,則且為的中點,又∵為的中點,∴,又平面,平面,故平面.(2)由平面,得,.以為原點,分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設,則,,,,,.取平面的一個法向量為,由,得:,令,得同理可得平面的一個法向量為∵平面平面,∴解得,得,又,設直線與平面所成角為,則.所以,直線與平面所成角的正弦值是.18.(1);(2)20【解析】

(1)利用即可得到答案;(2)利用直線參數(shù)方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數(shù)方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數(shù)分別為,,從而,則.本題考查了極坐標方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道容易題.19.(1)0.0081(2)見解析,保留乙生產線較好.【解析】

(1)先求出任取一件產品為合格品的頻率,“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,恰好發(fā)生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據(jù)甲生產線樣本的頻率分布直方圖,樣本中任取一件產品為合格品的頻率為:.設“從甲生產線生產的產品中任取一件且為合格品”為事件,事件發(fā)生的概率為,則由樣本可估計.那么“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,事件恰好發(fā)生2次,其概率為:.(2)列聯(lián)表:甲生產線乙生產線合計合格品9096186不合格品10414合計100100200的觀測值,∵,,∴有90%把握認為該企業(yè)生產的這種產品的質量指標值與生產線有關.由(1)知甲生產線的合格率為0.9,乙生產線的合格率為,∵,∴保留乙生產線較好.此題考查獨立重復性檢驗二項分布概率,獨立性檢驗等知識點,認準特征代入公式即可,屬于較易題目.20.(1)0.98;可用線性回歸模型擬合.(2)【解析】

(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關系數(shù)公式求出,根據(jù)的大小來確定結果;(2)求出藥品的每類劑型經(jīng)過兩次檢測后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過兩次檢測后合格的概率分別為,,,由題意,,.本題考查相關系數(shù)的求解,考查二項分布的期望,是中檔題.21.(1)見證明;(2)【解析】

(1)設是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標原點,的方向為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論