版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE專題06二次函數(shù)與幾何結(jié)合(解答壓軸題)通用的解題思路:1.理解題意:首先,仔細(xì)閱讀題目,理解題目中給出的二次函數(shù)表達(dá)式和幾何圖形的性質(zhì)。確定二次函數(shù)的一般形式,并理解a、b、c的值對(duì)函數(shù)圖像的影響。2.分析函數(shù)圖像:根據(jù)二次函數(shù)的系數(shù),判斷函數(shù)的開(kāi)口方向。計(jì)算對(duì)稱軸。計(jì)算頂點(diǎn)坐標(biāo)。確定函數(shù)與坐標(biāo)軸的交點(diǎn)。3.應(yīng)用幾何知識(shí):根據(jù)題目要求,利用幾何知識(shí)分析函數(shù)圖像與坐標(biāo)軸、對(duì)稱軸、頂點(diǎn)等的關(guān)系??赡苄枰?jì)算線段長(zhǎng)度、角度、面積等。4.建立方程或不等式:根據(jù)幾何關(guān)系,建立關(guān)于x或y的方程或不等式。利用二次函數(shù)的性質(zhì),如對(duì)稱性、最值等,進(jìn)一步簡(jiǎn)化方程或不等式。5.求解方程或不等式:使用代數(shù)方法,如配方法、公式法、因式分解法等,求解方程或不等式。驗(yàn)證解的合理性,確保解符合題目要求和二次函數(shù)的取值范圍。6.得出結(jié)論:根據(jù)求解結(jié)果,結(jié)合幾何知識(shí),得出最終結(jié)論。檢查答案是否符合題目要求,確保沒(méi)有遺漏或錯(cuò)誤。
(1)SKIPIF1<0_______;(2)D是第三象限拋物線上的一點(diǎn),連接OD,SKIPIF1<0;將原拋物線向左平移,使得平移后的拋物線經(jīng)過(guò)點(diǎn)D,過(guò)點(diǎn)SKIPIF1<0作x軸的垂線l.已知在l的左側(cè),平移前后的兩條拋物線都下降,求k的取值范圍;(3)將原拋物線平移,平移后的拋物線與原拋物線的對(duì)稱軸相交于點(diǎn)Q,且其頂點(diǎn)P落在原拋物線上,連接PC、QC、PQ.已知SKIPIF1<0是直角三角形,求點(diǎn)P的坐標(biāo).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0.【分析】(1)把SKIPIF1<0代入SKIPIF1<0即可求解;(2)過(guò)點(diǎn)D作DM⊥OA于點(diǎn)M,設(shè)SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,進(jìn)而求得平移后得拋物線,平移后得拋物線為SKIPIF1<0,根據(jù)二次函數(shù)得性質(zhì)即可得解;(3)先設(shè)出平移后頂點(diǎn)為SKIPIF1<0,根據(jù)原拋物線SKIPIF1<0,求得原拋物線的頂點(diǎn)SKIPIF1<0,對(duì)稱軸為x=1,進(jìn)而得SKIPIF1<0,再根據(jù)勾股定理構(gòu)造方程即可得解.【詳解】(1)解:把SKIPIF1<0代入SKIPIF1<0得,SKIPIF1<0,解得SKIPIF1<0,故答案為SKIPIF1<0;(2)解:過(guò)點(diǎn)D作DM⊥OA于點(diǎn)M,
∵SKIPIF1<0,∴二次函數(shù)的解析式為SKIPIF1<0設(shè)SKIPIF1<0,∵D是第三象限拋物線上的一點(diǎn),連接OD,SKIPIF1<0,∴SKIPIF1<0,解得m=SKIPIF1<0或m=8(舍去),當(dāng)m=SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴設(shè)將原拋物線向左平移后的拋物線為SKIPIF1<0,把SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,解得a=3或a=SKIPIF1<0(舍去),∴平移后得拋物線為SKIPIF1<0∵過(guò)點(diǎn)SKIPIF1<0作x軸的垂線l.已知在l的左側(cè),平移前后的兩條拋物線都下降,在SKIPIF1<0的對(duì)稱軸x=SKIPIF1<0的左側(cè),y隨x的增大而減小,此時(shí)原拋物線也是y隨x的增大而減小,∴SKIPIF1<0;(3)解:由SKIPIF1<0,設(shè)平移后的拋物線為SKIPIF1<0,則頂點(diǎn)為SKIPIF1<0,∵頂點(diǎn)為SKIPIF1<0在SKIPIF1<0上,∴SKIPIF1<0,∴平移后的拋物線為SKIPIF1<0,頂點(diǎn)為SKIPIF1<0,∵原拋物線SKIPIF1<0,∴原拋物線的頂點(diǎn)SKIPIF1<0,對(duì)稱軸為x=1,∵平移后的拋物線與原拋物線的對(duì)稱軸相交于點(diǎn)Q,∴SKIPIF1<0,∵點(diǎn)Q、C在直線x=1上,平移后的拋物線頂點(diǎn)P在原拋物線頂點(diǎn)C的上方,兩拋物線的交點(diǎn)Q在頂點(diǎn)P的上方,∴∠PCQ與∠CQP都是銳角,∵SKIPIF1<0是直角三角形,∴∠CPQ=90°,∴SKIPIF1<0,∴SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,∴p=1(舍去),或p=3或p=SKIPIF1<0,當(dāng)p=3時(shí),SKIPIF1<0,當(dāng)p=SKIPIF1<0時(shí),SKIPIF1<0,∴點(diǎn)P坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)的圖像及性質(zhì),勾股定理,解直角三角形以及待定系數(shù)法求二次函數(shù)的解析式,熟練掌握二次函數(shù)的圖像及性質(zhì)是解題的關(guān)鍵.2.(2023·江蘇徐州·中考真題)如圖,在平而直角坐標(biāo)系中,二次函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸分別交于點(diǎn)SKIPIF1<0,頂點(diǎn)為SKIPIF1<0.連接SKIPIF1<0,將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0按順時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得到線段SKIPIF1<0,連接SKIPIF1<0.點(diǎn)SKIPIF1<0分別在線段SKIPIF1<0上,連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0.
(1)求點(diǎn)SKIPIF1<0的坐標(biāo);(2)隨著點(diǎn)SKIPIF1<0在線段SKIPIF1<0上運(yùn)動(dòng).①SKIPIF1<0的大小是否發(fā)生變化?請(qǐng)說(shuō)明理由;②線段SKIPIF1<0的長(zhǎng)度是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)線段SKIPIF1<0的中點(diǎn)在該二次函數(shù)的圖象的對(duì)稱軸上時(shí),SKIPIF1<0的面積為.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)①SKIPIF1<0的大小不變,理由見(jiàn)解析;②線段SKIPIF1<0的長(zhǎng)度存在最大值為SKIPIF1<0;(3)SKIPIF1<0【分析】(1)SKIPIF1<0得SKIPIF1<0,解方程即可求得SKIPIF1<0的坐標(biāo),把SKIPIF1<0化為頂點(diǎn)式即可求得點(diǎn)SKIPIF1<0的坐標(biāo);(2)①在SKIPIF1<0上取點(diǎn)SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0是等邊三角形即可得出結(jié)論;②由SKIPIF1<0,得當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0的長(zhǎng)最大,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的長(zhǎng)最大,進(jìn)而解直角三角形即可求解;(3)設(shè)SKIPIF1<0的中點(diǎn)為點(diǎn)SKIPIF1<0,連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,證四邊形SKIPIF1<0是菱形,得SKIPIF1<0,進(jìn)而證明SKIPIF1<0得SKIPIF1<0,再證SKIPIF1<0,得SKIPIF1<0即SKIPIF1<0,結(jié)合三角形的面積公式即可求解.【詳解】(1)解:∵SKIPIF1<0,∴頂點(diǎn)為SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0;(2)解:①SKIPIF1<0的大小不變,理由如下:在SKIPIF1<0上取點(diǎn)SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,
∵SKIPIF1<0,∴拋物線對(duì)稱軸為SKIPIF1<0,即SKIPIF1<0,∵將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0按順時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得到線段SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0是等邊三角形,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,即SKIPIF1<0的大小不變;②,∵SKIPIF1<0,∴當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0的長(zhǎng)最大,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的長(zhǎng)最大,∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,即線段SKIPIF1<0的長(zhǎng)度存在最大值為SKIPIF1<0;(3)解:設(shè)SKIPIF1<0的中點(diǎn)為點(diǎn)SKIPIF1<0,連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0
∵SKIPIF1<0,∴四邊形SKIPIF1<0是菱形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0的中點(diǎn)為點(diǎn)SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0的中點(diǎn)為點(diǎn)SKIPIF1<0,SKIPIF1<0是等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0即SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為SKIPIF1<0.【點(diǎn)睛】本題主要考查了二次函數(shù)的圖像及性質(zhì),菱形的判定及性質(zhì),全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),等邊三角形的判定及性質(zhì)以及解直角三角形,題目綜合性較強(qiáng),熟練掌握各知識(shí)點(diǎn)是解題的關(guān)鍵.3.(2023·江蘇蘇州·中考真題)如圖,二次函數(shù)SKIPIF1<0的圖像與SKIPIF1<0軸分別交于點(diǎn)SKIPIF1<0(點(diǎn)A在點(diǎn)SKIPIF1<0的左側(cè)),直線SKIPIF1<0是對(duì)稱軸.點(diǎn)SKIPIF1<0在函數(shù)圖像上,其橫坐標(biāo)大于4,連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,以點(diǎn)SKIPIF1<0為圓心,作半徑為SKIPIF1<0的圓,SKIPIF1<0與SKIPIF1<0相切,切點(diǎn)為SKIPIF1<0.
(1)求點(diǎn)SKIPIF1<0的坐標(biāo);(2)若以SKIPIF1<0的切線長(zhǎng)SKIPIF1<0為邊長(zhǎng)的正方形的面積與SKIPIF1<0的面積相等,且SKIPIF1<0不經(jīng)過(guò)點(diǎn)SKIPIF1<0,求SKIPIF1<0長(zhǎng)的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)令SKIPIF1<0求得點(diǎn)SKIPIF1<0的橫坐標(biāo)即可解答;(2)由題意可得拋物線的對(duì)稱軸為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0;如圖連接SKIPIF1<0,則SKIPIF1<0,進(jìn)而可得切線長(zhǎng)SKIPIF1<0為邊長(zhǎng)的正方形的面積為SKIPIF1<0;過(guò)點(diǎn)P作SKIPIF1<0軸,垂足為H,可得SKIPIF1<0;由題意可得SKIPIF1<0,解得SKIPIF1<0;然后再分當(dāng)點(diǎn)M在點(diǎn)N的上方和下方兩種情況解答即可.【詳解】(1)解:令SKIPIF1<0,則有:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0.(2)解:∵拋物線過(guò)SKIPIF1<0∴拋物線的對(duì)稱軸為SKIPIF1<0,設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,如圖:連接SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴切線SKIPIF1<0為邊長(zhǎng)的正方形的面積為SKIPIF1<0,過(guò)點(diǎn)P作SKIPIF1<0軸,垂足為H,則:SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,
假設(shè)SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,則有以下兩種情況:①如圖1:當(dāng)點(diǎn)M在點(diǎn)N的上方,即SKIPIF1<0
∴SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0;②如圖2:當(dāng)點(diǎn)M在點(diǎn)N的上方,即SKIPIF1<0
∴SKIPIF1<0,解得:SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0;綜上,SKIPIF1<0或SKIPIF1<0.∴當(dāng)SKIPIF1<0不經(jīng)過(guò)點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題主要考查了二次函數(shù)的性質(zhì)、切線的性質(zhì)、勾股定理等知識(shí)點(diǎn),掌握分類討論思想是解答本題的關(guān)鍵.4.(2023·江蘇連云港·中考真題)如圖,在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0的頂點(diǎn)為SKIPIF1<0.直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,且平行于SKIPIF1<0軸,與拋物線SKIPIF1<0交于SKIPIF1<0兩點(diǎn)(SKIPIF1<0在SKIPIF1<0的右側(cè)).將拋物線SKIPIF1<0沿直線SKIPIF1<0翻折得到拋物線SKIPIF1<0,拋物線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,頂點(diǎn)為SKIPIF1<0.
(1)當(dāng)SKIPIF1<0時(shí),求點(diǎn)SKIPIF1<0的坐標(biāo);(2)連接SKIPIF1<0,若SKIPIF1<0為直角三角形,求此時(shí)SKIPIF1<0所對(duì)應(yīng)的函數(shù)表達(dá)式;(3)在(2)的條件下,若SKIPIF1<0的面積為SKIPIF1<0兩點(diǎn)分別在邊SKIPIF1<0上運(yùn)動(dòng),且SKIPIF1<0,以SKIPIF1<0為一邊作正方形SKIPIF1<0,連接SKIPIF1<0,寫(xiě)出SKIPIF1<0長(zhǎng)度的最小值,并簡(jiǎn)要說(shuō)明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(3)SKIPIF1<0,見(jiàn)解析【分析】(1)將拋物線解析式化為頂點(diǎn)式,進(jìn)而得出頂點(diǎn)坐標(biāo)SKIPIF1<0,根據(jù)對(duì)稱性,即可求解.(2)由題意得,SKIPIF1<0的頂點(diǎn)SKIPIF1<0與SKIPIF1<0的頂點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,SKIPIF1<0,則拋物線SKIPIF1<0.進(jìn)而得出可得SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),如圖1,過(guò)SKIPIF1<0作SKIPIF1<0軸,垂足為SKIPIF1<0.求得SKIPIF1<0,代入解析式得出SKIPIF1<0,求得SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),如圖2,過(guò)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長(zhǎng)線于點(diǎn)SKIPIF1<0.同理可得SKIPIF1<0,得出SKIPIF1<0,代入解析式得出SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0;③當(dāng)SKIPIF1<0時(shí),此情況不存在.(3)由(2)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0的面積為1,不合題意舍去.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0的面積為3,符合題意.由題意可求得SKIPIF1<0.取SKIPIF1<0的中點(diǎn)SKIPIF1<0,在SKIPIF1<0中可求得SKIPIF1<0.在SKIPIF1<0中可求得SKIPIF1<0.易知當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0取最小值,最小值為SKIPIF1<0.【詳解】(1)∵SKIPIF1<0,∴拋物線SKIPIF1<0的頂點(diǎn)坐標(biāo)SKIPIF1<0.∵SKIPIF1<0,點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱.∴SKIPIF1<0.(2)由題意得,SKIPIF1<0的頂點(diǎn)SKIPIF1<0與SKIPIF1<0的頂點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,∴SKIPIF1<0,拋物線SKIPIF1<0.∴當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),如圖1,過(guò)SKIPIF1<0作SKIPIF1<0軸,垂足為SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵直線SKIPIF1<0軸,∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.又∵點(diǎn)SKIPIF1<0在SKIPIF1<0圖像上,∴SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0.∵當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,此時(shí)SKIPIF1<0重合,舍去.當(dāng)SKIPIF1<0時(shí),符合題意.將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0.
②當(dāng)SKIPIF1<0時(shí),如圖2,過(guò)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長(zhǎng)線于點(diǎn)SKIPIF1<0.同理可得SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.又∵點(diǎn)SKIPIF1<0在SKIPIF1<0圖像上,∴SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.此時(shí)SKIPIF1<0符合題意.將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0.③當(dāng)SKIPIF1<0時(shí),此情況不存在.綜上,SKIPIF1<0所對(duì)應(yīng)的函數(shù)表達(dá)式為SKIPIF1<0或SKIPIF1<0.(3)如圖3,由(2)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的面積為1,不合題意舍去.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,此時(shí)SKIPIF1<0的面積為3,符合題意∴SKIPIF1<0.依題意,四邊形SKIPIF1<0是正方形,∴SKIPIF1<0.取SKIPIF1<0的中點(diǎn)SKIPIF1<0,在SKIPIF1<0中可求得SKIPIF1<0.在SKIPIF1<0中可求得SKIPIF1<0.∴當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0取最小值,最小值為SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),特殊三角形問(wèn)題,正方形的性質(zhì),勾股定理,面積問(wèn)題,分類討論是解題的關(guān)鍵.5.(2022·江蘇蘇州·中考真題)如圖,在二次函數(shù)SKIPIF1<0(m是常數(shù),且SKIPIF1<0)的圖像與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.其對(duì)稱軸與線段BC交于點(diǎn)E,與x軸交于點(diǎn)F.連接AC,BD.(1)求A,B,C三點(diǎn)的坐標(biāo)(用數(shù)字或含m的式子表示),并求SKIPIF1<0的度數(shù);(2)若SKIPIF1<0,求m的值;(3)若在第四象限內(nèi)二次函數(shù)SKIPIF1<0(m是常數(shù),且SKIPIF1<0)的圖像上,始終存在一點(diǎn)P,使得SKIPIF1<0,請(qǐng)結(jié)合函數(shù)的圖像,直接寫(xiě)出m的取值范圍.【答案】(1)A(-1,0);B(2m+1,0);C(0,2m+1);SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)分別令SKIPIF1<0等于0,即可求得SKIPIF1<0的坐標(biāo),根據(jù)SKIPIF1<0,即可求得SKIPIF1<0;(2)方法一:如圖1,連接AE.由解析式分別求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.根據(jù)軸對(duì)稱的性質(zhì),可得SKIPIF1<0,由SKIPIF1<0,建立方程,解方程即可求解.方法二:如圖2,過(guò)點(diǎn)D作SKIPIF1<0交BC于點(diǎn)H.由方法一,得SKIPIF1<0,SKIPIF1<0.證明SKIPIF1<0,根據(jù)相似三角形的性質(zhì)建立方程,解方程即可求解;(3)設(shè)PC與x軸交于點(diǎn)Q,當(dāng)P在第四象限時(shí),點(diǎn)Q總在點(diǎn)B的左側(cè),此時(shí)SKIPIF1<0,即SKIPIF1<0.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.解方程,得SKIPIF1<0,SKIPIF1<0.∵點(diǎn)A在點(diǎn)B的左側(cè),且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.(2)方法一:如圖1,連接AE.∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∵點(diǎn)A,點(diǎn)B關(guān)于對(duì)稱軸對(duì)稱,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴解方程,得SKIPIF1<0.方法二:如圖2,過(guò)點(diǎn)D作SKIPIF1<0交BC于點(diǎn)H.由方法一,得SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0,即SKIPIF1<0.∵SKIPIF1<0,∴解方程,得SKIPIF1<0.(3)SKIPIF1<0.設(shè)PC與x軸交于點(diǎn)Q,當(dāng)P在第四象限時(shí),點(diǎn)Q總在點(diǎn)B的左側(cè),此時(shí)SKIPIF1<0,即SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.解得SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)綜合,求二次函數(shù)與坐標(biāo)軸的交點(diǎn),角度問(wèn)題,解直角三角形,相似三角形的性質(zhì),三角形內(nèi)角和定理,綜合運(yùn)用以上知識(shí)是解題的關(guān)鍵.1.如圖,在平面直角坐標(biāo)系xOy中,已知拋物線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,SKIPIF1<0,與y軸交于點(diǎn)C.(1)求拋物線的函數(shù)表達(dá)式;(2)如圖1,若點(diǎn)M是第四象限內(nèi)拋物線上一點(diǎn),SKIPIF1<0軸交SKIPIF1<0于點(diǎn)N,SKIPIF1<0求SKIPIF1<0的最大值;(3)如圖2,在SKIPIF1<0軸上取一點(diǎn)SKIPIF1<0,拋物線沿SKIPIF1<0方向平移SKIPIF1<0個(gè)單位得新拋物線,新拋物線與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上運(yùn)動(dòng),線段SKIPIF1<0關(guān)于線段SKIPIF1<0的對(duì)稱線段SKIPIF1<0所在直線交新拋物線于點(diǎn)SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0所成夾角為SKIPIF1<0,直接寫(xiě)出點(diǎn)SKIPIF1<0的橫坐標(biāo).【答案】(1)拋物線的解析式為SKIPIF1<0;(2)SKIPIF1<0有最大值SKIPIF1<0;(3)SKIPIF1<0點(diǎn)的橫坐標(biāo)為SKIPIF1<0或6或SKIPIF1<0或SKIPIF1<0.【分析】(1)用待定系數(shù)法求函數(shù)的解析式即可;(2)過(guò)SKIPIF1<0點(diǎn)作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)SKIPIF1<0,可得四邊形SKIPIF1<0是平行四邊形,再由SKIPIF1<0,SKIPIF1<0,推導(dǎo)出SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值SKIPIF1<0;(3)求出平移后的函數(shù)解析式為SKIPIF1<0,直線SKIPIF1<0的解析式為SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0軸時(shí),直線SKIPIF1<0與直線SKIPIF1<0所成夾角為SKIPIF1<0,求出SKIPIF1<0,可得直線SKIPIF1<0的解析式為SKIPIF1<0,直線與拋物線的交點(diǎn)即為SKIPIF1<0點(diǎn);當(dāng)SKIPIF1<0軸時(shí),直線SKIPIF1<0與直線SKIPIF1<0所成夾角為SKIPIF1<0,求出SKIPIF1<0,可得直線SKIPIF1<0的解析式為SKIPIF1<0,直線與拋物線的交點(diǎn)即為SKIPIF1<0點(diǎn).【詳解】(1)解:將點(diǎn)SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0拋物線的解析式為SKIPIF1<0;(2)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入,可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0,過(guò)SKIPIF1<0點(diǎn)作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)SKIPIF1<0,∵SKIPIF1<0軸,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值SKIPIF1<0;(3)解:SKIPIF1<0拋物線沿SKIPIF1<0方向平移SKIPIF1<0個(gè)單位,SKIPIF1<0拋物線沿SKIPIF1<0軸負(fù)半軸平移2個(gè)單位,沿SKIPIF1<0軸正方向平移2個(gè)單位,SKIPIF1<0平移后的函數(shù)解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0軸時(shí),直線SKIPIF1<0與直線SKIPIF1<0所成夾角為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0點(diǎn)橫坐標(biāo)為SKIPIF1<0或6;當(dāng)SKIPIF1<0軸時(shí),直線SKIPIF1<0與直線SKIPIF1<0所成夾角為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0(舍SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0點(diǎn)的橫坐標(biāo)為SKIPIF1<0或SKIPIF1<0;綜上所述:SKIPIF1<0點(diǎn)的橫坐標(biāo)為SKIPIF1<0或6或SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題是二次函數(shù)的綜合問(wèn)題,考查二次函數(shù)的圖象及性質(zhì),解直角三角形,二次函數(shù)的平移,勾股定理,平行四邊形的判定和性質(zhì).熟練掌握二次函數(shù)的圖象及性質(zhì),平行線的性質(zhì),軸對(duì)稱的性質(zhì),直角三角形的性質(zhì)是解題的關(guān)鍵.2.蔬菜大棚是一種具有出色保溫性能的框架覆膜結(jié)構(gòu),它的出現(xiàn)使得人們可以吃到反季節(jié)蔬菜.一般蔬菜大棚使用竹結(jié)構(gòu)或者鋼結(jié)構(gòu)的骨架,上面覆上一層或多層保溫塑料膜,這樣就形成了一個(gè)溫室空間.如圖所示,某個(gè)溫室大棚的橫截面可以看作是由矩形SKIPIF1<0和拋物線的一部分SKIPIF1<0構(gòu)成的(以下簡(jiǎn)記為“拋物線SKIPIF1<0”),其中SKIPIF1<0,SKIPIF1<0,現(xiàn)取SKIPIF1<0中點(diǎn)O,過(guò)點(diǎn)O作線段SKIPIF1<0的垂直平分線SKIPIF1<0交拋物線SKIPIF1<0于點(diǎn)E,SKIPIF1<0.若以O(shè)點(diǎn)為原點(diǎn),SKIPIF1<0所在直線為x軸,SKIPIF1<0所在直線為y軸建立如圖①所示的平面直角坐標(biāo)系.請(qǐng)結(jié)合圖形解答下列問(wèn)題:(1)求拋物線的解析式.(2)如圖②所示,為了保證蔬菜大棚的通風(fēng)性,該大棚要安裝兩個(gè)正方形孔的排氣裝置SKIPIF1<0,其中L,R在拋物線SKIPIF1<0上,若SKIPIF1<0,求兩個(gè)正方形裝置的間距SKIPIF1<0的長(zhǎng).【答案】(1)拋物線的解析式為SKIPIF1<0(2)SKIPIF1<0【分析】本題考查二次函數(shù)的實(shí)際應(yīng)用,矩形的性質(zhì),讀懂題意,正確的求出二次函數(shù)解析式,利用數(shù)形結(jié)合的思想,進(jìn)行求解,是解題的關(guān)鍵.(1)由題意得SKIPIF1<0,SKIPIF1<0,設(shè)函數(shù)解析式為SKIPIF1<0,再利用待定系數(shù)法求出函數(shù)解析式即可;(2)求出SKIPIF1<0時(shí)對(duì)應(yīng)的自變量的值,得到SKIPIF1<0的長(zhǎng),再減去兩個(gè)正方形的邊長(zhǎng)即可得解;【詳解】(1)由題意,知四邊形SKIPIF1<0為矩形,SKIPIF1<0為SKIPIF1<0的垂直平分線,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)拋物線的解析式為SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0拋物線的解析式為SKIPIF1<0.(2)SKIPIF1<0四邊形SKIPIF1<0,四邊形SKIPIF1<0均為正方形,SKIPIF1<0,SKIPIF1<0.如圖所示,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)H,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)J,則四邊形SKIPIF1<0,四邊形SKIPIF1<0均為矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.3.已知拋物線SKIPIF1<0與x軸負(fù)半軸交于點(diǎn)A.與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C,連接SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求拋物線的解析式;(2)點(diǎn)P為第一象限拋物線上一點(diǎn),連接SKIPIF1<0、SKIPIF1<0,點(diǎn)P的橫坐標(biāo)是t,SKIPIF1<0的面積為S,求S與t之間的函數(shù)關(guān)系式(不用寫(xiě)出t的取值范圍);(3)在(2)的條件下,SKIPIF1<0交SKIPIF1<0于點(diǎn)D,連接SKIPIF1<0,以SKIPIF1<0為斜邊在SKIPIF1<0的右側(cè)作等腰SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,點(diǎn)F為線段SKIPIF1<0上一動(dòng)點(diǎn),當(dāng)SKIPIF1<0時(shí),求點(diǎn)F的坐標(biāo).【答案】(1)拋物線解析式為SKIPIF1<0;(2)SKIPIF1<0;(3)點(diǎn)F的坐標(biāo)為SKIPIF1<0.【分析】(1)先求出SKIPIF1<0,SKIPIF1<0,然后用待定系數(shù)法求解即可;(2)過(guò)點(diǎn)P作SKIPIF1<0軸于點(diǎn)H,作SKIPIF1<0軸于點(diǎn)T,令SKIPIF1<0交y軸于點(diǎn)SKIPIF1<0,P點(diǎn)在拋物線上,P點(diǎn)橫坐標(biāo)為t.根據(jù)SKIPIF1<0求出SKIPIF1<0,然后根據(jù)三角形面積公式求解即可;(3)過(guò)點(diǎn)E作SKIPIF1<0軸于點(diǎn)N,SKIPIF1<0延長(zhǎng)線交SKIPIF1<0于點(diǎn)K,過(guò)點(diǎn)D作SKIPIF1<0,交SKIPIF1<0延長(zhǎng)線于點(diǎn)M,過(guò)點(diǎn)E作SKIPIF1<0軸于點(diǎn)L.根據(jù)SKIPIF1<0證明SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,進(jìn)而可推出SKIPIF1<0,可求出SKIPIF1<0,結(jié)合SKIPIF1<0求出SKIPIF1<0.作SKIPIF1<0軸于點(diǎn)R,求出直線SKIPIF1<0解析式和直線SKIPIF1<0解析式.由SKIPIF1<0求出SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,求出直線SKIPIF1<0解析式,然后聯(lián)立直線SKIPIF1<0與SKIPIF1<0即可求解.【詳解】(1)令SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∵拋物線經(jīng)過(guò)A、B兩點(diǎn),∴SKIPIF1<0,解得SKIPIF1<0∴拋物線解析式為SKIPIF1<0(2)過(guò)點(diǎn)P作SKIPIF1<0軸于點(diǎn)H,作SKIPIF1<0軸于點(diǎn)T,令SKIPIF1<0交y軸于點(diǎn)SKIPIF1<0,P點(diǎn)在拋物線上,P點(diǎn)橫坐標(biāo)為t.∴SKIPIF1<0∵SKIPIF1<0∴四邊形SKIPIF1<0為矩形∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0即SKIPIF1<0(3)過(guò)點(diǎn)E作SKIPIF1<0軸于點(diǎn)N,SKIPIF1<0延長(zhǎng)線交SKIPIF1<0于點(diǎn)K,過(guò)點(diǎn)D作SKIPIF1<0,交SKIPIF1<0延長(zhǎng)線于點(diǎn)M,過(guò)點(diǎn)E作SKIPIF1<0軸于點(diǎn)L.∵SKIPIF1<0是等腰直角三角形∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0且SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴四邊形SKIPIF1<0為矩形∴SKIPIF1<0且SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0作SKIPIF1<0軸于點(diǎn)R∴四邊形SKIPIF1<0為矩形∴SKIPIF1<0SKIPIF1<0∴SKIPIF1<0且SKIPIF1<0設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0∴直線SKIPIF1<0解析式為SKIPIF1<0∵SKIPIF1<0∴設(shè)直線SKIPIF1<0解析式為SKIPIF1<0∵SKIPIF1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津?yàn)I海職業(yè)學(xué)院《房屋建筑學(xué)課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 天津?yàn)I海汽車(chē)工程職業(yè)學(xué)院《大數(shù)據(jù)系統(tǒng)(Hadoop)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 水果供銷采購(gòu)合同范例
- 村委雇傭合同范例
- 宣傳版面制作合同范例
- 合同范例實(shí)施方案
- 保安臨時(shí)勞務(wù)合同范例
- 雙方購(gòu)?fù)跈C(jī)合同范例
- 電梯維保公司勞動(dòng)合同范例
- 小區(qū)庫(kù)房交易合同范例
- 2023CSCO子宮內(nèi)膜癌診療指南
- 基礎(chǔ)有機(jī)化學(xué)實(shí)驗(yàn)智慧樹(shù)知到課后章節(jié)答案2023年下浙江大學(xué)
- 小學(xué)心理健康教育課件《微笑的力量》
- 職業(yè)教育一流核心課程證明材料 教學(xué)設(shè)計(jì)樣例
- 機(jī)電專業(yè)吊裝方案
- 處理突發(fā)事件流程圖
- 土地利用動(dòng)態(tài)遙感監(jiān)測(cè)規(guī)程
- 激光原理與技術(shù)-廈門(mén)大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 企業(yè)年金基金審計(jì)合同范本
- 全能值班員集控面試題
- 大班音樂(lè)《歡樂(lè)頌》課件
評(píng)論
0/150
提交評(píng)論