版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022年湖南省永州市冷水灘區(qū)中考數(shù)學仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A. B.0.00002=2×105C. D.2.若二次函數(shù)的圖象經(jīng)過點(﹣1,0),則方程的解為()A., B., C., D.,3.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)4.a(chǎn)的倒數(shù)是3,則a的值是()A. B.﹣ C.3 D.﹣35.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)6.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.4的平方根是()A.16 B.2 C.±2 D.±8.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體9.我國古代數(shù)學著作《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何?!贝笾乱馑际牵骸坝靡桓K子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設繩子長尺,木條長尺,根據(jù)題意所列方程組正確的是()A. B. C. D.10.下列算式中,結(jié)果等于x6的是()A.x2?x2?x2B.x2+x2+x2C.x2?x3D.x4+x2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形內(nèi)的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設可以在正方形內(nèi)部隨意取點,那么這個點取在陰影部分的概率為.12.拋物線y=mx2+2mx+5的對稱軸是直線_____.13.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.14.我國經(jīng)典數(shù)學著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.15.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.16.27的立方根為.17.分解因式:x2y﹣4xy+4y=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標;(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.19.(5分)如圖,在平面直角坐標系中,四邊形OABC為矩形,直線y=kx+b交BC于點E(1,m),交AB于點F(4,),反比例函數(shù)y=(x>0)的圖象經(jīng)過點E,F(xiàn).(1)求反比例函數(shù)及一次函數(shù)解析式;(2)點P是線段EF上一點,連接PO、PA,若△POA的面積等于△EBF的面積,求點P的坐標.20.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達式;(2)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?21.(10分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學知識探索它的最大面積(結(jié)果保留根號)22.(10分)“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.23.(12分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)24.(14分)我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
在完成此類化簡題時,應先將分子、分母中能夠分解因式的部分進行分解因式.有些需要先提取公因式,而有些則需要運用公式法進行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項錯誤;B、原式=2×10-5;故本選項錯誤;C、原式=;故本選項錯誤;D、原式=;故本選項正確;故選:D.【點睛】分式的乘除混合運算一般是統(tǒng)一為乘法運算,如果有乘方,還應根據(jù)分式乘方法則先乘方,即把分子、分母分別乘方,然后再進行乘除運算.同樣要注意的地方有:一是要確定好結(jié)果的符號;二是運算順序不能顛倒.2、C【解析】
∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.3、A【解析】
首先根據(jù)各選項棋子的位置,進而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關鍵.4、A【解析】
根據(jù)倒數(shù)的定義進行解答即可.【詳解】∵a的倒數(shù)是3,∴3a=1,解得:a=.故選A.【點睛】本題考查的是倒數(shù)的定義,即乘積為1的兩個數(shù)叫互為倒數(shù).5、C【解析】
作點D關于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關于x軸對稱,可知點D′的坐標為(0,﹣1).設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標特征;軸對稱-最短路線問題.6、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【點睛】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.7、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.8、A【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.9、A【解析】
本題的等量關系是:繩長-木長=4.5;木長-×繩長=1,據(jù)此列方程組即可求解.【詳解】設繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.10、A【解析】試題解析:A、x2?x2?x2=x6,故選項A符合題意;
B、x2+x2+x2=3x2,故選項B不符合題意;
C、x2?x3=x5,故選項C不符合題意;
D、x4+x2,無法計算,故選項D不符合題意.
故選A.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機事件的概率.12、x=﹣1【解析】
根據(jù)拋物線的對稱軸公式可直接得出.【詳解】解:這里a=m,b=2m∴對稱軸x=故答案為:x=-1.【點睛】解答本題關鍵是識記拋物線的對稱軸公式x=.13、【解析】
仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關鍵.14、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.15、(3,2).【解析】
過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關鍵.16、1【解析】找到立方等于27的數(shù)即可.解:∵11=27,∴27的立方根是1,故答案為1.考查了求一個數(shù)的立方根,用到的知識點為:開方與乘方互為逆運算17、y(x-2)2【解析】
先提取公因式y(tǒng),再根據(jù)完全平方公式分解即可得.【詳解】原式==,故答案為.三、解答題(共7小題,滿分69分)18、(1);(2)和;(3)【解析】
(1)設,,再根據(jù)根與系數(shù)的關系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標,設出點Q坐標,利用平行四邊形的性質(zhì),分類討論點P坐標,利用全等的性質(zhì)得出P點的橫坐標后,分別代入拋物線解析式,求出P點坐標;(3)過點作DH⊥軸于點,由::,可得::.設,可得點坐標為,可得.設點坐標為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設,,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為.②當以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為∴符合條件的點坐標為和.過點作DH⊥軸于點,∵::,∴::.設,則點坐標為,∴.∵點在拋物線上,∴點坐標為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關系、三角形相似以及平行四邊形的性質(zhì),解答關鍵是綜合運用數(shù)形結(jié)合分類討論思想.19、(1);;(2)點P坐標為(,).【解析】
(1)將F(4,)代入,即可求出反比例函數(shù)的解析式;再根據(jù)求出E點坐標,將E、F兩點坐標代入,即可求出一次函數(shù)解析式;(2)先求出△EBF的面積,點P是線段EF上一點,可設點P坐標為,根據(jù)面積公式即可求出P點坐標.【詳解】解:(1)∵反比例函數(shù)經(jīng)過點,∴n=2,反比例函數(shù)解析式為.∵的圖象經(jīng)過點E(1,m),∴m=2,點E坐標為(1,2).∵直線過點,點,∴,解得,∴一次函數(shù)解析式為;(2)∵點E坐標為(1,2),點F坐標為,∴點B坐標為(4,2),∴BE=3,BF=,∴,∴.點P是線段EF上一點,可設點P坐標為,∴,解得,∴點P坐標為.【點睛】本題主要考查反比例函數(shù),一次函數(shù)的解析式以及三角形的面積公式.20、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】
(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.21、(1)①;②;(2)150+475+475.【解析】
(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質(zhì)可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結(jié)合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,F(xiàn)D'即為所求最大值,再求得
△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內(nèi)接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D’,交AC于F,F(xiàn)D’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.【點睛】本題為圓的綜合應用,涉及知識點有圓周角定理、不等式的性質(zhì)、解直角三角形及轉(zhuǎn)化思想等.在(1)中注意直徑是最長的弦,在(2)中確定出四邊形ABCD面積最大時,D點的位置是解題的關鍵.本題考查知識點較多,綜合性很強,計算量很大,難度適中.22、(1)60,90°;(2)補圖見解析;(3)300;(4).【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總?cè)藬?shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024在線學生安全協(xié)議電子簽署及風險評估合同2篇
- 避孕藥具培訓
- 防范學生校園貸宣傳教育
- 白石銷售合同范例
- 《勞動標準培訓》課件
- 全屋定制意向金合同范例
- 裝備招標合同范例
- 防爆開關維修投標合同范例
- 《人生觀分享》課件
- 總價包干合同總價合同范例
- 南京理工大學物理化學試題庫(含答案)
- 醫(yī)院紀檢監(jiān)察室工作總結(jié)暨述職報告課件
- 貴州省銅仁市2022-2023學年高二上學期1月期末質(zhì)量監(jiān)測數(shù)學試題(含答案詳解)
- 正常分娩產(chǎn)婦護理查房
- 商業(yè)道德規(guī)范行為準則
- 人格心理學配套題庫
- 制造業(yè)中的生物多樣性和可持續(xù)性
- 保險公司分公司開業(yè)驗收統(tǒng)計與信息化細化項目表doc
- 提升國家語言能力的若干思考
- 四年級語文硬筆書法比賽方案
- 城鎮(zhèn)污水處理文獻綜述
評論
0/150
提交評論