2024屆湖南長(zhǎng)沙明德集團(tuán)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁(yè)
2024屆湖南長(zhǎng)沙明德集團(tuán)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁(yè)
2024屆湖南長(zhǎng)沙明德集團(tuán)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁(yè)
2024屆湖南長(zhǎng)沙明德集團(tuán)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁(yè)
2024屆湖南長(zhǎng)沙明德集團(tuán)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖南長(zhǎng)沙明德集團(tuán)中考數(shù)學(xué)最后沖刺模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列標(biāo)志中,可以看作是軸對(duì)稱圖形的是()A. B. C. D.2.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根C.有一個(gè)實(shí)數(shù)根 D.無(wú)實(shí)數(shù)根3.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°4.加工爆米花時(shí),爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時(shí)間t(單位:分鐘)滿足的函數(shù)關(guān)系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實(shí)驗(yàn)的數(shù)據(jù).根據(jù)上述函數(shù)模型和實(shí)驗(yàn)數(shù)據(jù),可得到最佳加工時(shí)間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘5.射擊訓(xùn)練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數(shù)均為8.7環(huán),方差分別為,,,,則四人中成績(jī)最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁6.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點(diǎn)P(1,3),則關(guān)于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<17.下列各圖中a、b、c為三角形的邊長(zhǎng),則甲、乙、丙三個(gè)三角形和左側(cè)△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙8.﹣的絕對(duì)值是()A.﹣ B. C.﹣2 D.29.在△ABC中,點(diǎn)D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=10.如果y=++3,那么yx的算術(shù)平方根是()A.2 B.3 C.9 D.±3二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.點(diǎn)P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再?gòu)挠嘞碌乃膫€(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是.12.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過(guò)直角頂點(diǎn)B,且平分△ABC的面積,BC=3,點(diǎn)A在反比例函數(shù)y=圖象上,則k=_______.13.如圖(1),在矩形ABCD中,將矩形折疊,使點(diǎn)B落在邊AD上,這時(shí)折痕與邊AD和BC分別交于點(diǎn)E、點(diǎn)F.然后再展開鋪平,以B、E、F為頂點(diǎn)的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時(shí),點(diǎn)E的坐標(biāo)為_________________________.14.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.15.若一次函數(shù)y=﹣2(x+1)+4的值是正數(shù),則x的取值范圍是_______.16.將2.05×10﹣3用小數(shù)表示為__.三、解答題(共8題,共72分)17.(8分)某公司銷售部有營(yíng)銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計(jì)了這15人某月的銷售量如下:每人銷售件數(shù)1800510250210150120人數(shù)113532(1)求這15位營(yíng)銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);假設(shè)銷售負(fù)責(zé)人把每位營(yíng)銷員的月銷售額定為320件,你認(rèn)為是否合理,為什么?如不合理,請(qǐng)你制定一個(gè)較合理的銷售定額,并說(shuō)明理由.18.(8分)某一天,水果經(jīng)營(yíng)戶老張用1600元從水果批發(fā)市場(chǎng)批發(fā)獼猴桃和芒果共50千克,后再到水果市場(chǎng)去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:品名獼猴桃芒果批發(fā)價(jià)元千克2040零售價(jià)元千克2650他購(gòu)進(jìn)的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣完,他能賺多少錢?19.(8分)我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)20.(8分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.21.(8分)解分式方程:22.(10分)如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且,連接AC,AF,過(guò)點(diǎn)C作CD⊥AF交AF延長(zhǎng)線于點(diǎn)D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.

23.(12分)如圖,AB是圓O的直徑,AC是圓O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.24.如圖,在?ABCD中,以點(diǎn)4為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于12(1)根據(jù)以上尺規(guī)作圖的過(guò)程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大?。?/p>

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意;

B、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意;

C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意;

D、是軸對(duì)稱圖形,符合題意.

故選D.【點(diǎn)睛】本題考查了中心對(duì)稱圖形和軸對(duì)稱圖形的定義,掌握中心對(duì)稱圖形與軸對(duì)稱圖形的概念,解答時(shí)要注意:判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部沿對(duì)稱軸疊后可重合;判斷中心對(duì)稱圖形是要尋找對(duì)稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.2、B【解析】一元二次方程的根的情況與根的判別式有關(guān),,方程有兩個(gè)不相等的實(shí)數(shù)根,故選B3、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.4、C【解析】

根據(jù)題目數(shù)據(jù)求出函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)可得.【詳解】根據(jù)題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當(dāng)t=?=3.75時(shí),p取得最大值,故選C.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,熟練掌握性質(zhì)是解題的關(guān)鍵.5、D【解析】

根據(jù)方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績(jī)最穩(wěn)定,故選D.【點(diǎn)睛】此題主要考查了方差,關(guān)鍵是掌握方差越小,穩(wěn)定性越大.6、C【解析】試題分析:當(dāng)x>1時(shí),x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點(diǎn):一次函數(shù)與一元一次不等式.7、B【解析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點(diǎn)睛:本題考查了三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.8、B【解析】

根據(jù)求絕對(duì)值的法則,直接計(jì)算即可解答.【詳解】,故選:B.【點(diǎn)睛】本題主要考查求絕對(duì)值的法則,掌握負(fù)數(shù)的絕對(duì)值等于它的相反數(shù),是解題的關(guān)鍵.9、D【解析】

根據(jù)平行線分線段成比例定理的逆定理,當(dāng)或時(shí),,然后可對(duì)各選項(xiàng)進(jìn)行判斷.【詳解】解:當(dāng)或時(shí),,

即或.

所以D選項(xiàng)是正確的.【點(diǎn)睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例.也考查了平行線分線段成比例定理的逆定理.10、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術(shù)平方根是1.故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的結(jié)果數(shù)為4,所以點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率==.故答案為.12、1【解析】分析:根據(jù)題意得出點(diǎn)B的坐標(biāo),根據(jù)面積平分得出點(diǎn)D的坐標(biāo),利用三角形相似可得點(diǎn)A的坐標(biāo),從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點(diǎn)B的坐標(biāo)為(1,0),∵BD平分△ABC的面積,BC=3∴點(diǎn)D的橫坐標(biāo)1.5,∴點(diǎn)D的坐標(biāo)為,∵DE:AB=1:1,∴點(diǎn)A的坐標(biāo)為(1,1),∴k=1×1=1.點(diǎn)睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應(yīng)用,屬于中等難度的題型.得出點(diǎn)D的坐標(biāo)是解決這個(gè)問(wèn)題的關(guān)鍵.13、(,2).【解析】

解:如圖,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點(diǎn)E坐標(biāo)(,2).故答案為:(,2).【點(diǎn)睛】本題考查翻折變換(折疊問(wèn)題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.14、1【解析】

兩個(gè)單項(xiàng)式合并成一個(gè)單項(xiàng)式,說(shuō)明這兩個(gè)單項(xiàng)式為同類項(xiàng).【詳解】解:由同類項(xiàng)的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)為:同類項(xiàng)中相同字母的指數(shù)是相同的.15、x<1【解析】

根據(jù)一次函數(shù)的性質(zhì)得出不等式解答即可.【詳解】因?yàn)橐淮魏瘮?shù)y=﹣2(x+1)+4的值是正數(shù),可得:﹣2(x+1)+4>0,解得:x<1,故答案為x<1.【點(diǎn)睛】本題考查了一次函數(shù)與一元一次不等式,根據(jù)題意正確列出不等式是解題的關(guān)鍵.16、0.1【解析】試題解析:原式=2.05×10-3=0.1.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法-原數(shù),用科學(xué)記數(shù)法表示的數(shù)還原成原數(shù)時(shí),n>0時(shí),n是幾,小數(shù)點(diǎn)就向右移幾位;n<0時(shí),n是幾,小數(shù)點(diǎn)就向左移幾位.三、解答題(共8題,共72分)17、(1)平均數(shù)為320件,中位數(shù)是210件,眾數(shù)是210件;(2)不合理,定210件【解析】試題分析:(1)根據(jù)平均數(shù)、中位數(shù)和眾數(shù)的定義即可求得結(jié)果;(2)把月銷售額320件與大部分員工的工資比較即可判斷.(1)平均數(shù)件,∵最中間的數(shù)據(jù)為210,∴這組數(shù)據(jù)的中位數(shù)為210件,∵210是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),∴眾數(shù)為210件;(2)不合理,理由:在15人中有13人銷售額達(dá)不到320件,定210件較為合理.考點(diǎn):本題考查的是平均數(shù)、眾數(shù)和中位數(shù)點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)或兩個(gè)數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè).18、(1)購(gòu)進(jìn)獼猴桃20千克,購(gòu)進(jìn)芒果30千克;(2)能賺420元錢.【解析】

設(shè)購(gòu)進(jìn)獼猴桃x千克,購(gòu)進(jìn)芒果y千克,由總價(jià)單價(jià)數(shù)量結(jié)合老張用1600元從水果批發(fā)市場(chǎng)批發(fā)獼猴桃和芒果共50千克,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;根據(jù)利潤(rùn)銷售收入成本,即可求出結(jié)論.【詳解】設(shè)購(gòu)進(jìn)獼猴桃x千克,購(gòu)進(jìn)芒果y千克,根據(jù)題意得:,解得:.答:購(gòu)進(jìn)獼猴桃20千克,購(gòu)進(jìn)芒果30千克.元.答:如果獼猴桃和芒果全部賣完,他能賺420元錢.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;根據(jù)數(shù)量關(guān)系,列式計(jì)算.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點(diǎn):平行四邊形的判定與性質(zhì);中點(diǎn)四邊形.20、證明見解析.【解析】

想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.21、無(wú)解【解析】

首先進(jìn)行去分母,將分式方程轉(zhuǎn)化為整式方程,然后按照整式方程的求解方法進(jìn)行求解,最后對(duì)所求的解進(jìn)行檢驗(yàn),看是否能使分母為零.【詳解】解:兩邊同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括號(hào),得:+2x-+4=8移項(xiàng)、合并同類項(xiàng)得:2x=4解得:x=2經(jīng)檢驗(yàn),x=2是方程的增根∴方程無(wú)解【點(diǎn)睛】本題考查解分式方程,注意分式方程結(jié)果要檢驗(yàn).22、(2)1【解析】試題分析:(1)連結(jié)OC,由=,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以O(shè)C⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關(guān)系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三邊的關(guān)系得BC=AC=1,AB=2BC=8,所以⊙O的半徑為1.試題解析:(1)證明:連結(jié)OC,如圖,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切線(2)解:連結(jié)BC,如圖∵AB為直徑∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半徑為1.考點(diǎn):圓周角定理,切線的判定定理,30°的直角三角形三邊的關(guān)系23、(1)∠A=30°;(2)【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論