




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
/P型和N型半導體如果雜質(zhì)是周期表中第Ⅲ族中的一種元素──受主雜質(zhì),例如硼或銦,它們的價電子帶都只有三個電子,并且它們傳導帶的最小能級低于第Ⅳ族元素的傳導電子能級。因此電子能夠更容易地由鍺或硅的價電子帶躍遷到硼或銦的傳導帶。在這個過程中,由于失去了電子而產(chǎn)生了一個正離子,因為這對于其它電子而言是個“空位”,所以通常把它叫做“空穴”,而這種材料被稱為“P”型半導體。在這樣的材料中傳導主要是由帶正電的空穴引起的,因而在這種情況下電子是“少數(shù)載流子”。如圖1所示。
N型半導體
如果摻入的雜質(zhì)是周期表第V族中的某種元素──施主雜質(zhì),例如砷或銻,這些元素的價電子帶都有五個電子,然而,雜質(zhì)元素價電子的最大能級大于鍺(或硅)的最大能級,因此電子很容易從這個能級進入第Ⅳ族元素的傳導帶。這些材料就變成了半導體。因為傳導性是由于有多余的負離子引起的,所以稱為“N”型。也有些材料的傳導性是由于材料中有多余的正離子,但主要還是由于有大量的電子引起的,因而(在N型材料中)電子被稱為“多數(shù)載流子”。如圖2所示。P型和N型半導體的應用
由P型半導體或N型半導體單體構(gòu)成的產(chǎn)品有熱敏電阻器、壓敏電阻器等電阻體。由P型與N型半導體結(jié)合而構(gòu)成的單結(jié)半導體元件,最常見的是二極管;此外,F(xiàn)ET也是單結(jié)元件。PNP或NPN以與形成雙結(jié)的半導體就是晶體管。(1)用于LEDLED在20世紀60年代誕生后就被認定是熒光燈管、燈泡等照明設備的終結(jié)者,甚至有人認為LED將會開創(chuàng)一個新的照明時代,最終出現(xiàn)在所有需要照明的場合。LED的工作原理和我們常見的白熾燈、熒光燈完全不同,LED從本質(zhì)上來說是一種半導體器件。LED的核心部分是由P型半導體和N型半導體組成的晶片,在P型半導體和N型半導體的交界面就會出現(xiàn)一個具有特殊導電性能的薄層,也就是常說的PN結(jié)(PNJunctionTransistors)。PN結(jié)可以對P型半導體和N型半導體中多數(shù)載流子的擴散運動產(chǎn)生阻力,當對PN結(jié)施加正向電壓時,電流從LED的陽極流向陰極,而在PN結(jié)中少數(shù)載流子與多數(shù)載流子進行復合,多余的能量就會轉(zhuǎn)變成光而釋放出來。LED正是根據(jù)這樣的原理實現(xiàn)電光的轉(zhuǎn)換。根據(jù)半導體材料物理性能的不同,LED可發(fā)出從紫外到紅外不同波段、不同顏色的光線。小知識:P型半導體和N型半導體如果在硅或鍺等半導體材料中加入微量的硼、銦、鎵或鋁等三價元素,就變成以空穴導電為主的半導體,即P型半導體。在P型半導體中,空穴(帶正電)叫多數(shù)載流子;電子(帶負電)叫少數(shù)載流子。如果在硅或鍺等半導體材料中加入微量的磷、銻、砷等五價元素,就變成以電子導電為主的半導體,即N型半導體。在N型半導體中,電子(帶負電)叫多數(shù)載流子;空穴(帶正電)叫少數(shù)載流子。(2)在半導體熱電偶中的應用熱電制冷是熱電效應主要是珀爾帖效應在制冷技術(shù)方面的應用。實用的熱電制冷裝置是由熱電效應比較顯著、熱電制冷效率比較高的半導體熱電偶構(gòu)成的。半導體熱電偶由N型半導體和P型半導體組成。N型材料有多余的電子,有負溫差電勢。P型材料電子不足,有正溫差電勢;當電子從P型穿過結(jié)點至N型時,結(jié)點的溫度降低,其能量必然增加,而且增加的能量相當于結(jié)點所消耗的能量。相反,當電子從N型流至P型材料時,結(jié)點的溫度就會升高。直接接觸的熱電偶電路在實際應用中不可用,所以用下圖的連接方法來代替,實驗證明,在溫差電路中引入第三種材料(銅連接片和導線)不會改變電路的特性。這樣,半導體組件可以用各種不同的連接方法來滿足使用者的要求。把一個P型半導體組件和一個N型半導體組件聯(lián)結(jié)成一對熱電偶,接上直流電源后,在接頭處就會產(chǎn)生溫差和熱量的轉(zhuǎn)移。在上面的接頭處,電流方向是從N至P,溫度下降并且吸熱,這就是冷端;而在下面的一個接頭處,電流方向是從P至N,溫度上升并且放熱,因此是熱端。按圖中把若干對半導體熱電偶對在電路上串聯(lián)起來,而在傳熱方面則是并聯(lián)的,這就構(gòu)成了一個常見的制冷熱電堆。按圖示接上直流電源后,這個熱電堆的上面是冷端,下面是熱端。借助鋁散熱器等各種散熱手段,使熱電堆的熱端不斷散熱并且保持一定的溫度,把熱電堆的冷端放到工作環(huán)境中去吸熱降溫,這就是熱電制冷器的工作原理。圖3是熱電偶的工作原理示意圖。半導體:電阻率介于金屬和絕緣體之間并有負的電阻溫度系數(shù)的物質(zhì)。半導體\o"查看圖片"
半導體室溫時電阻率約在10-5~107歐·米之間,溫度升高時電阻率指數(shù)則減小。半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括Ⅲ-Ⅴ族化合物(砷化鎵、磷化鎵等)、Ⅱ-Ⅵ族化合物(硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以與由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態(tài)半導體外,還有非晶態(tài)的玻璃半導體、有機半導體等。本征半導體不含雜質(zhì)且無晶格缺陷的半導體稱為本征半導體。在極低溫度下,半導體的價帶是滿帶(見能帶理論),受到熱激發(fā)后,價帶中的部分電子會越過禁帶進入能量較高的空帶,空帶中存在電子后成為導帶,價帶中缺少一個電子后形成一個帶正電的空位,稱為空穴(圖1)。導帶中的電子和價帶中的空穴合稱電子-空穴對,均能自由移動,即載流子,它們在外電場作用下產(chǎn)生定向運動而形成宏觀電流,分別稱為電子導電和空穴導電。這種由于電子-空穴對的產(chǎn)生而形成的混合型導電稱為本征導電。導帶中的電子會落入空穴,電子-空穴對消失,稱為復合。復合時釋放出的能量變成電磁輻射(發(fā)光)或晶格的熱振動能量(發(fā)熱)。在一定溫度下,電子-空穴對的產(chǎn)生和復合同時存在并達到動態(tài)平衡,此時半導體具有一定的載流子密度,從而具有一定的電阻率。溫度升高時,將產(chǎn)生更多的電子-空穴對,載流子密度增加,電阻率減小。無晶格缺陷的純凈半導體的電阻率較大,實際應用不多。\o"查看圖片"
半導體半導體中雜質(zhì)半導體中的雜質(zhì)對電阻率的影響非常大。半導體中摻入微量雜質(zhì)時,雜質(zhì)原子附近的周期勢場受到干擾并形成附加的束縛狀態(tài),在禁帶中產(chǎn)加的雜質(zhì)能級。例如四價元素鍺或硅晶體中摻入五價元素磷、砷、銻等雜質(zhì)原子時,雜質(zhì)原子作為晶格的一分子,其五個價電子中有四個與周圍的鍺(或硅)原子形成共價結(jié)合,多余的一個電子被束縛于雜質(zhì)原子附近,產(chǎn)生類氫能級。雜質(zhì)能級位于禁帶上方靠近導帶底附近。雜質(zhì)能級上的電子很易激發(fā)到導帶成為電子載流子。這種能提供電子載流子的雜質(zhì)稱為施主,相應能級稱為施主能級。施主能級上的電子躍遷到導帶所需能量比從價帶激發(fā)到導帶所需能量小得多(圖2)。在鍺或硅晶體中摻入微量三價元素硼、鋁、鎵等雜質(zhì)原子時,雜質(zhì)原子與周圍四個鍺(或硅)原子形成共價結(jié)合時尚缺少一個電子,因而存在一個空位,與此空位相應的能量狀態(tài)就是雜質(zhì)能級,通常位于禁帶下方靠近價帶處。價帶中的電子很易激發(fā)到雜質(zhì)能級上填補這個空位,使雜質(zhì)原子成為負離子。價帶中由于缺少一個電子而形成一個空穴載流子(圖3)。這種能提供空穴的雜質(zhì)稱為受主雜質(zhì)。存在受主雜質(zhì)時,在價帶中形成一個空穴載流子所需能量比本征半導體情形要小得多。半導體摻雜后其電阻率大大下降。加熱或光照產(chǎn)生的熱激發(fā)或光激發(fā)都會使自由載流子數(shù)增加而導致電阻率減小,半導體熱敏電阻和光敏電阻就是根據(jù)此原理制成的。對摻入施主雜質(zhì)的半導體,導電載流子主要是導帶中的電子,屬電子型導電,稱N型半導體。摻入受主雜質(zhì)的半導體屬空穴型導電,稱P型半導體。半導體在任何溫度下都能產(chǎn)生電子-空穴對,故N型半導體中可存在少量導電空穴,P型半導體中可存在少量導電電子,它們均稱為少數(shù)載流子。在半導體器件的各種效應中,少數(shù)載流子常扮演重要角色。\o"查看圖片"
N型半導體結(jié)構(gòu)圖PN結(jié)P型半導體與N型半導體相互接觸時,其交界區(qū)域稱為PN結(jié)。P區(qū)中的自由空穴和N區(qū)中的自由電子要向?qū)Ψ絽^(qū)域擴散,造成正負電荷在PN結(jié)兩側(cè)的積累,形成電偶極層(圖4)。電偶極層中的電場方向正好阻止擴散的進行。當由于載流子數(shù)密度不等引起的擴散作用與電偶層中電場的作用達到平衡時,P區(qū)和N區(qū)之間形成一定的電勢差,稱為接觸電勢差。由于P區(qū)中的空穴向N區(qū)擴散后與N區(qū)中的電子復合,而N區(qū)中的電子向P區(qū)擴散后與P區(qū)中的空穴復合,這使電偶極層中自由載流子數(shù)減少而形成高阻層,故電偶極層也叫阻擋層,阻擋層的電阻值往往是組成PN結(jié)的半導體的原有阻值的幾十倍乃至幾百倍。PN結(jié)具有單向?qū)щ娦裕雽w整流管就是利用PN結(jié)的這一特性制成的。PN結(jié)的另一重要性質(zhì)是受到光照后能產(chǎn)生電動勢,稱光生伏打效應,可利用來制造光電池。半導體三極管、可控硅、PN結(jié)光敏器件和發(fā)光二極管等半導體器件均利用了PN結(jié)的特性。編輯本段多樣性物質(zhì)存在的形式多種多樣,固體、液體、氣體、等離子體等等。我們通常把導電性和導熱性差或不好的材料,如金剛石、人工晶體、琥珀、陶瓷等等,稱為絕緣體。而把導電、導熱都比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體??梢院唵蔚陌呀橛趯w和絕緣體之間的材料稱為半導體。與導體和絕緣體相比,半導體材料的發(fā)現(xiàn)是最晚的,直到20世紀30年代,當材料的提純技術(shù)改進以后,半導體的存在才真正被學術(shù)界認可。編輯本段分類半導體的分類,按照其制造技術(shù)可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。此外還有以應用領(lǐng)域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)與其規(guī)模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數(shù)字、模擬數(shù)字混成與功能進行分類的方法。編輯本段半導體定義電阻率介于金屬和絕緣體[1]之間并有負的電阻溫度系數(shù)的物質(zhì)。半導體室溫時電阻率約在10E-5~10E7歐姆·米之間,溫度升高時電阻率指數(shù)則減小。半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括Ⅲ-Ⅴ族化合物(砷化鎵、磷化鎵等)、Ⅱ-Ⅵ族化合物(硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以與由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態(tài)半導體外,還有非晶態(tài)的玻璃半導體、有機半導體等。半導體:意指半導體收音機,因收音機中的晶體管由半導體材料制成而得名。本征半導體不含雜質(zhì)且無晶格缺陷的半導體稱為本征半導體。在極低溫度下,半導體的價帶是滿帶(見能帶理論),受到熱激發(fā)后,價帶中的部分電子會越過禁帶進入能量較高的空帶,空帶中存在電子后成為導帶,價帶中缺少一個電子后形成一個帶正電的空位,稱為空穴。導帶中的電子和價帶中的空穴合稱電子-空穴對,均能自由移動,即載流子,它們在外電場作用下產(chǎn)生定向運動而形成宏觀電流,分別稱為電子導電和空穴導電。這種由于電子-空穴對的產(chǎn)生而形成的混合型導電稱為本征導電。導帶中的電子會落入空穴,電子-空穴對消失,稱為復合。復合時釋放出的能量變成電磁輻射(發(fā)光)或晶格的熱振動能量(發(fā)熱)。在一定溫度下,電子-空穴對的產(chǎn)生和復合同時存在并達到動態(tài)平衡,此時半導體具有一定的載流子密度,從而具有一定的電阻率。溫度升高時,將產(chǎn)生更多的電子-空穴對,載流子密度增加,電阻率減小。無晶格缺陷的純凈半導體的電阻率較大,實際應用不多。編輯本段歷程IC封裝歷史始于30多年前。當時采用金屬和陶瓷兩大類封殼,它們曾是電子工業(yè)界的“轅馬”,憑其結(jié)實、可靠、散熱好、功耗大、能承受嚴酷環(huán)境條件等優(yōu)點,廣泛滿足從消費類電子產(chǎn)品到空間電子產(chǎn)品的需求。但它們有諸多制約因素,即重量、成本、封裝密度與引腳數(shù)。最早的金屬殼是TO型,俗稱“禮帽型”;陶瓷殼則是扁平長方形。大約在20世紀60年代中期,仙童公司開發(fā)出塑料雙列直插式封裝(PDIP),有8條引線。隨著硅技術(shù)的發(fā)展,芯片尺寸愈來愈大,相應地封殼也要變大。到60年代末,四邊有引線較大的封裝出現(xiàn)了。那時人們還不太注意壓縮器件的外形尺寸,故而大一點的封殼也可以接受。但大封殼占用PCB面積多,于是開發(fā)出引線陶瓷芯片載體(LCCC)。1976年~1977年間,它的變體即塑料有引線載體(PLCC)面世,且生存了約10年,其引腳數(shù)有16個~132個。20世紀80年代中期開發(fā)出的四方型扁平封裝(QFP)接替了PLCC。當時有凸緣QFP(BQFP)和公制MQFP(MQFP)兩種。但很快MQFP以其明顯的優(yōu)點取代了BQFP。其后相繼出現(xiàn)了多種改進型,如薄型QFP(TQFP)、細引腳間距QFP(VQFP)、縮小型QFP(SQFP)、塑料QFP(PQFP)、金屬Q(mào)FP(MetalQFP)、載帶QFP(TapeQFP)等。這些QFP均適合表面貼裝。但這種結(jié)構(gòu)仍占用太多的PCB面積,不適應進一步小型化的要求。因此,人們開始注意縮小芯片尺寸,相應的封裝也要盡量小。實際上,1968年~1969年,菲利浦公司就開發(fā)出小外形封裝(SOP)。以后逐漸派生出J型引腳小外型封裝(SOJ)、薄小外形封裝(TSOP)、甚小外形封裝(VSOP)、縮小型SOP(SSOP)、薄的縮小型SOP(TSSOP)與小外形晶體管(SOT)、小外型集成電路(SOIC)等。這樣,IC的塑封殼有兩大類:方型扁平型和小型外殼型。前者適用于多引腳電路,后者適用于少引腳電路。隨著半導體工業(yè)的飛速發(fā)展,芯片的功能愈來愈強,需要的外引腳數(shù)也不斷增加,再停留在周邊引線的老模式上,即使把引線間距再縮小,其局限性也日漸突出,于是有了面陣列的新概念,誕生了陣列式封裝。陣列式封裝最早是針柵陣列(PGA),引腳為針式。將引腳形狀變通為球形凸點,即有球柵陣列(BGA);球改為柱式就是柱柵陣列(CGA)。后來更有載帶BGA(TBGA)、金屬封裝BGA(MBGA)、陶瓷BGA(CBGA)、倒裝焊BGA(FCBGA)、塑料BGA(PBGA)、增強型塑封BGA(EPBGA)、芯片尺寸BGA(D2BGA)、小型BGA(MiniBGA)、微小型BGA(MicroBGA)與可控塌陷BGA(C2BGA)等。BGA成為當今最活躍的封裝形式。歷史上,人們也曾試圖不給IC任何封裝。最早的有IBM公司在20世紀60年代開發(fā)的C4(可控塌陷芯片連接)技術(shù)。以后有板上芯片(COB)、柔性板上芯片(COF)與芯片上引線(LOC)等。但裸芯片面臨一個確認優(yōu)質(zhì)芯片(KGD)的問題。因此,提出了既給IC加上封裝又不增加多少“面積”的設想,1992年日本富士通首先提出了芯片尺寸封裝(CSP)概念。很快引起國際上的關(guān)注,它必將成為IC封裝的一個重要熱點。另一種封裝形式是貝爾實驗室大約在1962年提出,由IBM付諸實現(xiàn)的帶式載體封裝(TCP)。它是以柔性帶取代剛性板作載體的一種封裝。因其價格昂貴、加工費時,未被廣泛使用。上述種類繁多的封裝,其實都源自20世紀60年代就誕生的封裝設想。推動其發(fā)展的因素一直是功率、重量、引腳數(shù)、尺寸、密度、電特性、可靠性、熱耗散,價格等。盡管已有這么多封裝可供選擇,但新的封裝還會不斷出現(xiàn)。另一方面,有不少封裝設計師與工程師正在努力以去掉封裝。當然,這絕非易事,封裝將至少還得陪伴我們20年,直到真正實現(xiàn)芯片只在一個互連層上集成??梢赃@樣粗略地歸納封裝的發(fā)展進程:結(jié)構(gòu)方面TO→DIP→LCC→QFP→BGA→CSP;材料方面是金屬→陶瓷→塑料;引腳形狀是長引線直插→短引線或無引線貼裝→球狀凸點;裝配方式是通孔封裝→表面安裝→直接安裝。編輯本段特點半導體五大特性∶電阻率特性,導電特性,光電特性,負的電阻率溫度特性,整流特性。★在形成晶體結(jié)構(gòu)的半導體中,人為地摻入特定的雜質(zhì)元素,導電性能具有可控性。★在光照和熱輻射條件下,其導電性有明顯的變化。晶格:晶體中的原子在空間形成排列整齊的點陣,稱為晶格。共價鍵結(jié)構(gòu):相鄰的兩個原子的一對最外層電子(即價電子)不但各自圍繞自身所屬的原子核運動,而且出現(xiàn)在相鄰原子所屬的軌道上,成為共用電子,構(gòu)成共價鍵。自由電子的形成:在常溫下,少數(shù)的價電子由于熱運動獲得足夠的能量,掙脫共價鍵的束縛變成為自由電子??昭ǎ簝r電子掙脫共價鍵的束縛變成為自由電子而留下一個空位置稱空穴。電子電流:在外加電場的作用下,自由電子產(chǎn)生定向移動,形成電子電流??昭娏鳎簝r電子按一定的方向依次填補空穴(即空穴也產(chǎn)生定向移動),形成空穴電流。本征半導體的電流:電子電流+空穴電流。自由電子和空穴所帶電荷極性不同,它們運動方向相反。載流子:運載電荷的粒子稱為載流子。導體電的特點:導體導電只有一種載流子,即自由電子導電。本征半導體電的特點:本征半導體有兩種載流子,即自由電子和空穴均參與導電。本征激發(fā):半導體在熱激發(fā)下產(chǎn)生自由電子和空穴的現(xiàn)象稱為本征激發(fā)。復合:自由電子在運動的過程中如果與空穴相遇就會填補空穴,使兩者同時消失,這種現(xiàn)象稱為復合。動態(tài)平衡:在一定的溫度下,本征激發(fā)所產(chǎn)生的自由電子與空穴對,與復合的自由電子與空穴對數(shù)目相等,達到動態(tài)平衡。載流子的濃度與溫度的關(guān)系:溫度一定,本征半導體中載流子的濃度是一定的,并且自由電子與空穴的濃度相等。當溫度升高時,熱運動加劇,掙脫共價鍵束縛的自由電子增多,空穴也隨之增多(即載流子的濃度升高),導電性能增強;當溫度降低,則載流子的濃度降低,導電性能變差。結(jié)論:本征半導體的導電性能與溫度有關(guān)。半導體材料性能對溫度的敏感性,可制作熱敏和光敏器件,又造成半導體器件溫度穩(wěn)定性差的原因。雜質(zhì)半導體:通過擴散工藝,在本征半導體中摻入少量合適的雜質(zhì)元素,可得到雜質(zhì)半導體。N型半導體:在純凈的硅晶體中摻入五價元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半導體。多數(shù)載流子:N型半導體中,自由電子的濃度大于空穴的濃度,稱為多數(shù)載流子,簡稱多子。少數(shù)載流子:N型半導體中,空穴為少數(shù)載流子,簡稱少子。施子原子:雜質(zhì)原子可以提供電子,稱施子原子。N型半導體的導電特性:它是靠自由電子導電,摻入的雜質(zhì)越多,多子(自由電子)的濃度就越高,導電性能也就越強。P型半導體:在純凈的硅晶體中摻入三價元素(如硼),使之取代晶格中硅原子的位置,形成P型半導體。多子:P型半導體中,多子為空穴。少子:P型半導體中,少子為電子。受主原子:雜質(zhì)原子中的空位吸收電子,稱受主原子。P型半導體的導電特性:摻入的雜質(zhì)越多,多子(空穴)的濃度就越高,導電性能也就越強。結(jié)論:多子的濃度決定于雜質(zhì)濃度。少子的濃度決定于溫度。PN結(jié)的形成:將P型半導體與N型半導體制作在同一塊硅片上,在它們的交界面就形成PN結(jié)。PN結(jié)的特點:具有單向?qū)щ娦?。擴散運動:物質(zhì)總是從濃度高的地方向濃度低的地方運動,這種由于濃度差而產(chǎn)生的運動稱為擴散運動。空間電荷區(qū):擴散到P區(qū)的自由電子與空穴復合,而擴散到N區(qū)的空穴與自由電子復合,所以在交界面附近多子的濃度下降,P區(qū)出現(xiàn)負離子區(qū),N區(qū)出現(xiàn)正離子區(qū),它們是不能移動,稱為空間電荷區(qū)。電場形成:空間電荷區(qū)形成內(nèi)電場??臻g電荷加寬,內(nèi)電場增強,其方向由N區(qū)指向P區(qū),阻止擴散運動的進行。漂移運動:在電場力作用下,載流子的運動稱漂移運動。PN結(jié)的形成過程:如圖所示,將P型半導體與N型半導體制作在同一塊硅片上,在無外電場和其它激發(fā)作用下,參與擴散運動的多子數(shù)目等于參與漂移運動的少子數(shù)目,從而達到動態(tài)平衡,形成PN結(jié)。\o"查看圖片"
PN結(jié)的形成過程電位差:空間電荷區(qū)具有一定的寬度,形成電位差Uho,電流為零。耗盡層:絕大部分空間電荷區(qū)內(nèi)自由電子和空穴的數(shù)目都非常少,在分析PN結(jié)時常忽略載流子的作用,而只考慮離子區(qū)的電荷,稱耗盡層。PN結(jié)的單向?qū)щ娦跃庉嫳径畏蔡匦郧€伏安特性曲線:加在PN結(jié)兩端的電壓和流過二極管的電流之間的關(guān)系曲線稱為伏安特性曲線。如圖所示:\o"查看圖片"
PN伏安特性正向特性:u>0的部分稱為正向特性。反向特性:u<0的部分稱為反向特性。反向擊穿:當反向電壓超過一定數(shù)值U(BR)后,反向電流急劇增加,稱之反向擊穿。勢壘電容:耗盡層寬窄變化所等效的電容稱為勢壘電容Cb。變?nèi)荻O管:當PN結(jié)加反向電壓時,Cb明顯隨u的變化而變化,而制成各種變?nèi)荻O管。如下圖所示。\o"查看圖片"
PN結(jié)的勢壘電容平衡少子:PN結(jié)處于平衡狀態(tài)時的少子稱為平衡少子。非平衡少子:PN結(jié)處于正向偏置時,從P區(qū)擴散到N區(qū)的空穴和從N區(qū)擴散到P區(qū)的自由電子均稱為非平衡少子。擴散電容:擴散區(qū)內(nèi)電荷的積累和釋放過程與電容器充、放電過程相同,這種電容效應稱為Cd。結(jié)電容:勢壘電容與擴散電容之和為PN結(jié)的結(jié)電容Cj。編輯本段半導體雜質(zhì)半導體中的雜質(zhì)對電阻率的影響非常大。半導體中摻入微量雜質(zhì)時,雜質(zhì)原子附近的周期勢場受到干擾并形成附加的束縛狀態(tài),在禁帶中產(chǎn)加的雜質(zhì)能級。例如四價元素鍺或硅晶體中摻入五價元素磷、砷、銻等雜質(zhì)原子時,雜質(zhì)原子作為晶格的一分子,其五個價電子中有四個與周圍的鍺(或硅)原子形成共價結(jié)合,多余的一個電子被束縛于雜質(zhì)原子附近,產(chǎn)生類氫能級。雜質(zhì)能級位于禁帶上方靠近導帶底附近。雜質(zhì)能級上的電子很易激發(fā)到導帶成為電子載流子。這種能提供電子載流子的雜質(zhì)稱為施主,相應能級稱為施主能級。施主能級上的電子躍遷到導帶所需能量比從價帶激發(fā)到導帶所需能量小得多(圖2)。在鍺或硅晶體中摻入微量三價元素硼、鋁、鎵等雜質(zhì)原子時,雜質(zhì)原子與周圍四個鍺(或硅)原子形成共價結(jié)合時尚缺少一個電子,因而存在一個空位,與此空位相應的能量狀態(tài)就是雜質(zhì)能級,通常位于禁帶下方靠近價帶處。價帶中的電子很易激發(fā)到雜質(zhì)能級上填補這個空位,使雜質(zhì)原子成為負離子。價帶中由于缺少一個電子而形成一個空穴載流子(圖3)。這種能提供空穴的雜質(zhì)稱為受主雜質(zhì)。存在受主雜質(zhì)時,在價帶中形成一個空穴載流子所需能量比本征半導體情形要小得多。半導體摻雜后其電阻率大大下降。加熱或光照產(chǎn)生的熱激發(fā)或光激發(fā)都會使自由載流子數(shù)增加而導致電阻率減小,半導體熱敏電阻和光敏電阻就是根據(jù)此原理制成的。對摻入施主雜質(zhì)的半導體,導電載流子主要是導帶中的電子,屬電子型導電,稱N型半導體。摻入受主雜質(zhì)的半導體屬空穴型導電,稱P型半導體。半導體在任何溫度下都能產(chǎn)生電子-空穴對,故N型半導體中可存在少量導電空穴,P型半導體中可存在少量導電電子,它們均稱為少數(shù)載流子。在半導體器件的各種效應中,少數(shù)載流子常扮演重要角色。PN結(jié)P型半導體與N型半導體相互接觸時,其交界區(qū)域稱為PN結(jié)。P區(qū)中的自由空穴和N區(qū)中的自由電子要向?qū)Ψ絽^(qū)域擴散,造成正負電荷在PN結(jié)兩側(cè)的積累,形成電偶極層(圖4)。電偶極層中的電場方向正好阻止擴散的進行。當由于載流子數(shù)密度不等引起的擴散作用與電偶層中電場的作用達到平衡時,P區(qū)和N區(qū)之間形成一定的電勢差,稱為接觸電勢差。由于P區(qū)中的空穴向N區(qū)擴散后與N區(qū)中的電子復合,而N區(qū)中的電子向P區(qū)擴散后與P區(qū)中的空穴復合,這使電偶極層中自由載流子數(shù)減少而形成高阻層,故電偶極層也叫阻擋層,阻擋層的電阻值往往是組成PN結(jié)的半導體的原有阻值的幾十倍乃至幾百倍。PN結(jié)具有單向?qū)щ娦裕雽w整流管就是利用PN結(jié)的這一特性制成的。PN結(jié)的另一重要性質(zhì)是受到光照后能產(chǎn)生電動勢,稱光生伏打效應,可利用來制造光電池。半導體三極管、可控硅、PN結(jié)光敏器件和發(fā)光二極管等半導體器件均利用了PN結(jié)的特性。PN結(jié)的單向?qū)щ娦訮端接電源的正極,N端接電源的負極稱之為PN結(jié)正偏。此時PN結(jié)如同一個開關(guān)合上,呈現(xiàn)很小的電阻,稱之為導通狀態(tài)。P端接電源的負極,N端接電源的正極稱之為PN結(jié)反偏,此時PN結(jié)處于截止狀態(tài),如同開關(guān)打開。結(jié)電阻很大,當反向電壓加大到一定程度,PN結(jié)會發(fā)生擊穿而損壞。半導體摻雜半導體之所以能廣泛應用在今日的數(shù)位世界中,憑借的就是其能借由在其晶格中植入雜質(zhì)改變其電性,這個過程稱之為摻雜(doping)。摻雜進入本質(zhì)半導體(intrinsicsemiconductor)的雜質(zhì)濃度與極性皆會對半導體的導電特性產(chǎn)生很大的影響。而摻雜過的半導體則稱為外質(zhì)半導體(extrinsicsemiconductor)。半導體摻雜物哪種材料適合作為某種半導體材料的摻雜物(dopant)需視兩者的原子特性而定。一般而言,摻雜物依照其帶給被摻雜材料的電荷正負被區(qū)分為施體(donor)與受體(acceptor)。施體原子帶來的價電子(valenceelectrons)大多會與被摻雜的材料原子產(chǎn)生共價鍵,進而被束縛。而沒有和被摻雜材料原子產(chǎn)生共價鍵的電子則會被施體原子微弱地束縛住,這個電子又稱為施體電子。和本質(zhì)半導體的價電子比起來,施體電子躍遷至傳導帶所需的能量較低,比較容易在半導體材料的晶格中移動,產(chǎn)生電流。雖然施體電子獲得能量會躍遷至傳導帶,但并不會和本質(zhì)半導體一樣留下一個電洞,施體原子在失去了電子后只會固定在半導體材料的晶格中。因此這種因為摻雜而獲得多余電子提供傳導的半導體稱為n型半導體(n-typesemiconductor),n代表帶負電荷的電子。和施體相對的,受體原子進入半導體晶格后,因為其價電子數(shù)目比半導體原子的價電子數(shù)量少,等效上會帶來一個的空位,這個多出的空位即可視為電洞。受體摻雜后的半導體稱為p型半導體(p-typesemiconductor),p代表帶正電荷的電洞。以一個硅的本質(zhì)半導體來說明摻雜的影響。硅有四個價電子,常用于硅的摻雜物有三價與五價的元素。當只有三個價電子的三價元素如硼(boron)摻雜至硅半導體中時,硼扮演的即是受體的角色,摻雜了硼的硅半導體就是p型半導體。反過來說,如果五價元素如磷(phosphorus)摻雜至硅半導體時,磷扮演施體的角色,摻雜磷的硅半導體成為n型半導體。一個半導體材料有可能先后摻雜施體與受體,而如何決定此外質(zhì)半導體為n型或p型必須視摻雜后的半導體中,受體帶來的電洞濃度較高或是施體帶來的電子濃度較高,亦即何者為此外質(zhì)半導體的“多數(shù)載子”(majoritycarrier)。和多數(shù)載子相對的是少數(shù)載子(minoritycarrier)。對于半導體元件的操作原理分析而言,少數(shù)載子在半導體中的行為有著非常重要的地位。半導體載子濃度摻雜物濃度對于半導體最直接的影響在于其載子濃度。在熱平衡的狀態(tài)下,一個未經(jīng)摻雜的本質(zhì)半導體,電子與電洞的濃度相等,如下列公式所示:n=p=ni其中n是半導體內(nèi)的電子濃度、p則是半導體的電洞濃度,ni則是本質(zhì)半導體的載子濃度。ni會隨著材料或溫度的不同而改變。對于室溫下的硅而言,ni大約是1×10cm。通常摻雜濃度越高,半導體的導電性就會變得越好,原因是能進入傳導帶的電子數(shù)量會隨著摻雜濃度提高而增加。摻雜濃度非常高的半導體會因為導電性接近金屬而被廣泛應用在今日的集成電路制程來取代部份金屬。高摻雜濃度通常會在n或是p后面附加一上標的“+”號,例如n代表摻雜濃度非常高的n型半導體,反之例如p則代表輕摻雜的p型半導體。需要特別說明的是即使摻雜濃度已經(jīng)高到讓半導體“退化”(degenerate)為導體,摻雜物的濃度和原本的半導體原子濃度比起來還是差距非常大。以一個有晶格結(jié)構(gòu)的硅本質(zhì)半導體而言,原子濃度大約是5×10cm,而一般集成電路制程里的摻雜濃度約在10cm至10cm之間。摻雜濃度在10cm以上的半導體在室溫下通常就會被視為是一個“簡并半導體”(degeneratedsemiconductor)。重摻雜的半導體中,摻雜物和半導體原子的濃度比約是千分之一,而輕摻雜則可能會到十億分之一的比例。在半導體制程中,摻雜濃度都會依照所制造出元件的需求量身打造,以合于使用者的需求。摻雜對半導體結(jié)構(gòu)的影響摻雜之后的半導體能帶會有所改變。依照摻雜物的不同,本質(zhì)半導體的能隙之間會出現(xiàn)不同的能階。施體原子會在靠近傳導帶的地方產(chǎn)生一個新的能階,而受體原子則是在靠近價帶的地方產(chǎn)生新的能階。假設摻雜硼原子進入硅,則因為硼的能階到硅的價帶之間僅有0.045電子伏特,遠小于硅本身的能隙1.12電子伏特,所以在室溫下就可以使摻雜到硅里的硼原子完全解離化(ionize)。摻雜物對于能帶結(jié)構(gòu)的另一個重大影響是改變了費米能階的位置。在熱平衡的狀態(tài)下費米能階依然會保持定值,這個特性會引出很多其他有用的電特性。舉例來說,一個p-n接面(p-njunction)的能帶會彎折,起因是原本p型半導體和n型半導體的費米能階位置各不相同,但是形成p-n接面后其費米能階必須保持在同樣的高度,造成無論是p型或是n型半導體的傳導帶或價帶都會被彎曲以配合接面處的能帶差異。上述的效應可以用能帶圖(banddiagram)來解釋,。在能帶圖里橫軸代表位置,縱軸則是能量。圖中也有費米能階,半導體的本質(zhì)費米能階(intrinsicFermilevel)通常以Ei來表示。在解釋半導體元件的行為時,能帶圖是非常有用的工具。半導體材料的制造為了滿足量產(chǎn)上的需求,半導體的電性必須是可預測并且穩(wěn)定的,因此包括摻雜物的純度以與半導體晶格結(jié)構(gòu)的品質(zhì)都必須嚴格要求。常見的品質(zhì)問題包括晶格的錯位(dislocation)、雙晶面(twins),或是堆棧錯誤(stackingfault)都會影響半導體材料的特性。對于一個半導體元件而言,材料晶格的缺陷通常是影響元件性能的主因。目前用來成長高純度單晶半導體材料最常見的方法稱為裘可拉斯基制程(Czochralskiprocess)。這種制程將一個單晶的晶種(seed)放入溶解的同材質(zhì)液體中,再以旋轉(zhuǎn)的方式緩緩向上拉起。在晶種被拉起時,溶質(zhì)將會沿著固體和液體的接口固化,而旋轉(zhuǎn)則可讓溶質(zhì)的溫度均勻。編輯本段半導體歷史半導體的發(fā)現(xiàn)實際上可以追溯到很久以前,1833年,英國巴拉迪最先發(fā)現(xiàn)硫化銀的電阻隨著溫度的變化情況不同于一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發(fā)現(xiàn)硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現(xiàn)象的首次發(fā)現(xiàn)。不久,1839年法國的貝克萊爾發(fā)現(xiàn)半導體和電解質(zhì)接觸形成的結(jié),在光照下會產(chǎn)生一個電壓,這就是后來人們熟知的光生伏特效應,這是被發(fā)現(xiàn)的半導體的第二個特征。在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關(guān),即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發(fā)現(xiàn)了銅與氧化銅的整流效應。1873年,英國的史密斯發(fā)現(xiàn)硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質(zhì)。半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發(fā)現(xiàn))雖在1880年以前就先后被發(fā)現(xiàn)了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結(jié)出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。很多人會疑問,為什么半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關(guān)的問題就難以說清楚。如果感興趣可以讀一下RobertW.Cahn的ThecomingofMaterialsScience中關(guān)于半導體的一些說明。半導體于室溫時電導率約在10ˉ10~10000/Ω·cm之間,純凈的半導體溫度升高時電導率按指數(shù)上升。半導體材料有很多種,按化學成分可分為元素半導體和化合物半導體兩大類。除上述晶態(tài)半導體外,還有非晶態(tài)的有機物半導體等和本征半導體。編輯本段半導體應用最早的實用“半導體”是「電晶體(Transistor)/二極體(Diode)」。一、在無?電收音機(Radio)與電視機(Television)中,作為“訊號放大器/整流器”用。二、近來發(fā)展「太陽能(SolarPower)」,也用在「光電池(SolarCell)」中。三、半導體可以用來測量溫度,測溫范圍可以達到生產(chǎn)、生活、醫(yī)療衛(wèi)生、科研教學等應用的70%的領(lǐng)域,有較高的準確度和穩(wěn)定性,分辨率可達0.1℃,甚至達到0.01℃也不是不可能,線性度0.2%,測溫范圍-100~+300℃,是性價比極高的一種測溫元件。編輯本段半導體行業(yè)的發(fā)展世界半導體行業(yè)巨頭紛紛到國內(nèi)投資,整個半導體行業(yè)快速發(fā)展,這也要求材料業(yè)要跟上半導體行業(yè)發(fā)展的步伐??梢哉f,市場發(fā)展為半導體支撐材料業(yè)帶來前所未有的發(fā)展機遇。編輯本段各國半導體命名方法中國半導體器件型號命名方法半導體器件型號由五部分(場效應器件、半導體特殊器件、復合管、PIN型管、激光器件的型號命名只有第三、四、五部分)組成。五個部分意義如下:第一部分:用數(shù)字表示半導體器件有效電極數(shù)目。2-二極管、3-三極管第二部分:用漢語拼音字母表示半導體器件的材料和極性。表示二極管時:A-N型鍺材料、B-P型鍺材料、C-N型硅材料、D-P型硅材料。表示三極管時:A-PNP型鍺材料、B-NPN型鍺材料、C-PNP型硅材料、D-NPN型硅材料。第三部分:用漢語拼音字母表示半導體器件的內(nèi)型。P-普通管、V-微波管、W-穩(wěn)壓管、C-參量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光電器件、K-開關(guān)管、X-低頻小功率管(F<3MHz,Pc<1W)、G-高頻小功率管(f>3MHz,Pc<1W)、D-低頻大功率管(f<3MHz,Pc>1W)、A-高頻大功率管(f>3MHz,Pc>1W)、T-半導體晶閘管(可控整流器)、Y-體效應器件、B-雪崩管、J-階躍恢復管、CS-場效應管、BT-半導體特殊器件、FH-復合管、PIN-PIN型管、JG-激光器件。第四部分:用數(shù)字表示序號第五部分:用漢語拼音字母表示規(guī)格號例如:3DG18表示NPN型硅材料高頻三極管日本半導體分立器件型號命名方法日本生產(chǎn)的半導體分立器件,由五至七部分組成。通常只用到前五個部分,其各部分的符號意義如下:第一部分:用數(shù)字表示器件有效電極數(shù)目或類型。0-光電(即光敏)二極管三極管與上述器件的組合管、1-二極管、2三極或具有兩個pn結(jié)的其他器件、3-具有四個有效電極或具有三個pn結(jié)的其他器件、┄┄依此類推。第二部分:日本電子工業(yè)協(xié)會JEIA注冊標志。S-表示已在日本電子工業(yè)協(xié)會JEIA注冊登記的半導體分立器件。第三部分:用字母表示器件使用材料極性和類型。A-PNP型高頻管、B-PNP型低頻管、C-NPN型高頻管、D-NPN型低頻管、F-P控制極可控硅、G-N控制極可控硅、H-N基極單結(jié)晶體管、J-P溝道場效應管、K-N溝道場效應管、M-雙向可控硅。第四部分:用數(shù)字表示在日本電子工業(yè)協(xié)會JEIA登記的順序號。兩位以上的整數(shù)-從“11”開始,表示在日本電子工業(yè)協(xié)會JEIA登記的順序號;不同公司的性能相同的器件可以使用同一順序號;數(shù)字越大,越是近期產(chǎn)品。第五部分:用字母表示同一型號的改進型產(chǎn)品標志。A、B、C、D、E、F表示這一器件是原型號產(chǎn)品的改進產(chǎn)品。美國半導體分立器件型號命名方法美國晶體管或其他半導體器件的命名法較混亂。美國電子工業(yè)協(xié)會半導體分立器件命名方法如下:第一部分:用符號表示器件用途的類型。JAN-軍級、JANTX-特軍級、JANTXV-超特軍級、JANS-宇航級、(無)-非軍用品。第二部分:用數(shù)字表示pn結(jié)數(shù)目。1-二極管、2=三極管、3-三個pn結(jié)器件、n-n個pn結(jié)器件。第三部分:美國電子工業(yè)協(xié)會(EIA)注冊標志。N-該器件已在美國電子工業(yè)協(xié)會(EIA)注冊登記。第四部分:美國電子工業(yè)協(xié)會登記順序號。多位數(shù)字-該器件在美國電子工業(yè)協(xié)會登記的順序號。第五部分:用字母表示器件分檔。A、B、C、D、┄┄-同一型號器件的不同檔別。如:JAN2N3251A表示PNP硅高頻小功率開關(guān)三極管,JAN-軍級、2-三極管、N-EIA注冊標志、3251-EIA登記順序號、A-2N3251A檔。國際電子聯(lián)合會半導體型號命名方法德國、法國、意大利、荷蘭、比利時等歐洲國家以與匈牙利、羅馬尼亞、南斯拉夫、波蘭等東歐國家,大都采用國際電子聯(lián)合會半導體分立器件型號命名方法。這種命名方法由四個基本部分組成,各部分的符號與意義如下:第一部分:用字母表示器件使用的材料。A-器件使用材料的禁帶寬度Eg=0.6~1.0eV如鍺、B-器件使用材料的Eg=1.0~1.3eV如硅、C-器件使用材料的Eg>1.3eV如砷化鎵、D-器件使用材料的Eg<0.6eV如銻化銦、E-器件使用復合材料與光電池使用的材料第二部分:用字母表示器件的類型與主要特征。A-檢波開關(guān)混頻二極管、B-變?nèi)荻O管、C-低頻小功率三極管、D-低頻大功率三極管、E-隧道二極管、F-高頻小功率三極管、G-復合器件與其他器件、H-磁敏二極管、K-開放磁路中的霍爾元件、L-高頻大功率三極管、M-封閉磁路中的霍爾元件、P-光敏器件、Q-發(fā)光器件、R-小功率晶閘管、S-小功率開關(guān)管、T-大功率晶閘管、U-大功率開關(guān)管、X-倍增二極管、Y-整流二極管、Z-穩(wěn)壓二極管。第三部分:用數(shù)字或字母加數(shù)字表示登記號。三位數(shù)字-代表通用半導體器件的登記序號、一個字母加二位數(shù)字-表示專用半導體器件的登記序號。第四部分:用字母對同一類型號器件進行分檔。A、B、C、D、E┄┄-表示同一型號的器件按某一參數(shù)進行分檔的標志。除四個基本部分外,有時還加后綴,以區(qū)別特性或進一步分類。常見后綴如下:1、穩(wěn)壓二極管型號的后綴。其后綴的第一部分是一個字母,表示穩(wěn)定電壓值的容許誤差范圍,字母A、B、C、D、E分別表示容許誤差為±1%、±2%、±5%、±10%、±15%;其后綴第二部分是數(shù)字,表示標稱穩(wěn)定電壓的整數(shù)數(shù)值;后綴的第三部分是字母V,代表小數(shù)點,字母V之后的數(shù)字為穩(wěn)壓管標稱穩(wěn)定電壓的小數(shù)值。2、整流二極管后綴是數(shù)字,表示器件的最大反向峰值耐壓值,單位是伏特。3、晶閘管型號的后綴也是數(shù)字,通常標出最大反向峰值耐壓值和最大反向關(guān)斷電壓中數(shù)值較小的那個電壓值。如:BDX51-表示NPN硅低頻大功率三極管,AF239S-表示PNP鍺高頻小功率三極管。五、歐洲早期半導體分立器件型號命名法歐洲有些國家命名方法第一部分:O-表示半導體器件第二部分:A-二極管、C-三極管、AP-光電二極管、CP-光電三極管、AZ-穩(wěn)壓管、RP-光電器件。第三部分:多位數(shù)字-表示器件的登記序號。第四部分:A、B、C┄┄-表示同一型號器件的變型產(chǎn)品。[2]編輯本段型號命名方法半導體一、中國半導體器件型號命名方法半導體器件型號由五部分(場效應器件、半導體特殊器件、復合管、\o"查看圖片"
半導體PIN型管、激光器件的型號命名只有第三、四、五部分)組成。五個部分意義如下:第一部分:用數(shù)字表示半導體器件有效電極數(shù)目。2-二極管、3-三極管第二部分:用漢語拼音字母表示半導體器件的材料和極性。表示二極管時:A-N型鍺材料、B-P型鍺材料、C-N型硅材料、D-P型硅材料。表示三極管時:A-PNP型鍺材料、B-NPN型鍺材料、C-PNP型硅材料、D-NPN型硅材料。第三部分:用漢語拼音字母表示半導體器件的內(nèi)型。P-普通管、V-微波管、W-穩(wěn)壓管、C-參量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光電器件、K-開關(guān)管、X-低頻小功率管(F3MHz,Pc1W)、A-高頻大功率管(f>3MHz,Pc>1W)、T-半導體晶閘管(可控整流器)、Y-體效應器件、B-雪崩管、J-階躍恢復管、CS-場效應管、BT-半導體特殊器件、FH-復合管、PIN-PIN型管、JG-激光器件。第四部分:用數(shù)字表示序號第五部分:用漢語拼音字母表示規(guī)格號例如:3DG18表示NPN型硅材料高頻三極管日本半導體分立器件型號命名方法日本生產(chǎn)的半導體分立器件,由五至七部分組成。通常只用到前五個部分,其各部分的符號意義如下:第一部分:用數(shù)字表示器件有效電極數(shù)目或類型。0-光電(即光敏)二極管三極管與上述器件的組合管、1-二極管、2三極或具有兩個pn結(jié)的其他器件、3-具有四個有效電極或具有三個pn結(jié)的其他器件、┄┄依此類推。第二部分:日本電子工業(yè)協(xié)會JEIA注冊標志。S-表示已在日本電子工業(yè)協(xié)會JEIA注冊登記的半導體分立器件。第三部分:用字母表示器件使用材料極性和類型。A-PNP型高頻管、B-PNP型低頻管、C-NPN型高頻管、D-NPN型低頻管、F-P控制極可控硅、G-N控制極可控硅、H-N基極單結(jié)晶體管、J-P溝道場效應管、K-N溝道場效應管、M-雙向可控硅。第四部分:用數(shù)字表示在日本電子工業(yè)協(xié)會JEIA登記的順序號。兩位以上的整數(shù)-從“11”開始,表示在日本電子工業(yè)協(xié)會JEIA登記的順序號;不同公司的性能相同的器件可以使用同一順序號;數(shù)字越大,越是近期產(chǎn)品。第五部分:用字母表示同一型號的改進型產(chǎn)品標志。A、B、C、D、E、F表示這一器件是原型號產(chǎn)品的改進產(chǎn)品。美國半導體分立器件型號命名方法美國晶體管或其他半導體器件的命名法較混亂。美國電子工業(yè)協(xié)會半導體分立器件命名方法如下:第一部分:用符號表示器件用途的類型。JAN-軍級、JANTX-特軍級、JANTXV-超特軍級、JANS-宇航級、(無)-非軍用品。第二部分:用數(shù)字表示pn結(jié)數(shù)目。1-二極管、2=三極管、3-三個pn結(jié)器件、n-n個pn結(jié)器件。第三部分:美國電子工業(yè)協(xié)會(EIA)注冊標志。N-該器件已在美國電子工業(yè)協(xié)會(EIA)注冊登記。第四部分:美國電子工業(yè)協(xié)會登記順序號。多位數(shù)字-該器件在美國電子工業(yè)協(xié)會登記的順序號。第五部分:用字母表示器件分檔。A、B、C、D、┄┄-同一型號器件的不同檔別。如:JAN2N3251A表示PNP硅高頻小功率開關(guān)三極管,JAN-軍級、2-三極管、N-EIA注冊標志、3251-EIA登記順序號、A-2N3251A檔。國際電子聯(lián)合會半導體器件型號命名方法德國、法國、意大利、荷蘭、比利時等歐洲國家以與匈牙利、羅馬尼亞、南斯拉夫、波蘭等東歐國家,大都采用國際電子聯(lián)合會半導體分立器件型號命名方法。這種命名方法由四個基本部分組成,各部分的符號與意義如下:第一部分:用字母表示器件使用的材料。A-器件使用材料的禁帶寬度Eg=0.6~1.0eV如鍺、B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石坎施工方案
- 培訓機構(gòu)消防施工方案
- 關(guān)于施工方案
- 美麗人生觀后感
- 二零二五年度私人房產(chǎn)全款買賣合同(限智能家居)
- 甲乙丙方2025年度轉(zhuǎn)租健身房租賃合同
- 2025年度電力工程安全防護電力勞務分包合同模板
- 二零二五年度生物樣本低溫保管與共享協(xié)議
- 工傷事故賠償及職工權(quán)益保護協(xié)議2025年度范本
- 二零二五年度科技孵化器場地租賃管理服務合同
- 廉政鑒定書(院內(nèi)廉政意見書)
- 《潘姓源于固始,是不爭的史實》的考辨
- 二次電纜敷設、接線作業(yè)指導書
- 焊接技師培訓教材(釬焊)課件
- 《等腰三角形的性質(zhì)》優(yōu)秀課件
- 原發(fā)性肝癌經(jīng)皮肝動脈化療栓塞術(shù)(TACE)臨床路徑
- 異常情況匯報流程圖
- 化工工藝學-第二章-化工原料及其初步加工
- 全國水資源綜合規(guī)劃技術(shù)細則(水利部文件)
- 02312電力系統(tǒng)遠動及調(diào)度自動化
- 校園欺凌談心記錄
評論
0/150
提交評論