版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué)必修二知識歸納總結(jié)很多同學(xué)在復(fù)習(xí)高中數(shù)學(xué)必修二的知識點(diǎn)時(shí),因?yàn)闆]有做過系統(tǒng)的總結(jié),導(dǎo)致復(fù)習(xí)效率不高。下面是由編輯為大家整理的“高中數(shù)學(xué)必修二知識歸納總結(jié)”,僅供參考,歡迎大家閱讀本文。數(shù)學(xué)必修二的知識點(diǎn)總結(jié)一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。②過兩點(diǎn)的直線的斜率公式:注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(3)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。(4)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(二)垂直直線系垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(三)過定點(diǎn)的直線系(ⅰ)斜率為k的直線系:,直線過定點(diǎn);(ⅱ)過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。(6)兩直線平行與垂直(7)兩條直線的交點(diǎn)相交交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離(10)兩平行直線距離公式在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。二、圓的方程1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。2、圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;(2)一般方程當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。3、直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況:(1)設(shè)直線,圓,圓心到l的距離為,則有;;(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設(shè)圓,兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)三、立體幾何初步1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征(1)棱柱:幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺(tái):幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。3、空間幾何體的直觀圖——斜二測畫法斜二測畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。4、柱體、錐體、臺(tái)體的表面積與體積(1)幾何體的表面積為幾何體各個(gè)面的面積的和。(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)(3)柱體、錐體、臺(tái)體的體積公式4、空間點(diǎn)、直線、平面的位置關(guān)系公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。應(yīng)用:判斷直線是否在平面內(nèi)用符號語言表示公理1:公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線符號:平面α和β相交,交線是a,記作α∩β=a。符號語言:公理2的作用:①它是判定兩個(gè)平面相交的方法。②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線_公共點(diǎn)。③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)公理4:平行于同一條直線的兩條直線互相平行空間直線與直線之間的位置關(guān)系①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線②異面直線性質(zhì):既不平行,又不相交。③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。數(shù)學(xué)必修二的知識點(diǎn)總結(jié)一、直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,⑵斜截式:直線在軸上的截距為和斜率,則直線方程為4、直線與直線的位置關(guān)系:(1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=05、點(diǎn)到直線的距離公式;兩條平行線與的距離是6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長二、圓錐曲線方程:1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b23、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;4、直線被圓錐曲線截得的弦長公式:3、模的計(jì)算:|a|=.算??梢韵人阆蛄康钠椒?、向量的運(yùn)算過程中完全平方公式等照樣適用:三、直線、平面、簡單幾何體:1、學(xué)會(huì)三視圖的分析:2、斜二測畫法應(yīng)注意的地方:(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時(shí),把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.3、表(側(cè))面積與體積公式:⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=⑷球體:①表面積:S=;②體積:V=4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。(2)平面與平面平行:①線面平行面面平行。(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;⑵直線與平面所成的角:直線與射影所成的角數(shù)學(xué)必修二的知識點(diǎn)總結(jié)一、隨機(jī)事件主要掌握好(三四五)(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。二、概率定義(1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;(3)幾何概率:樣本空間中的元素有無窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。三、概率性質(zhì)與公式(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.(5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.拓展閱讀:高一數(shù)學(xué)學(xué)習(xí)方法先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45065-2024皮革和毛皮化學(xué)試驗(yàn)揮發(fā)性甲基環(huán)硅氧烷殘留量的測定
- 二零二五年度房地產(chǎn)投資居間服務(wù)盡職調(diào)查合同3篇
- 二零二五年度二手車過戶業(yè)務(wù)資金監(jiān)管及擔(dān)保服務(wù)合同
- 二零二五年度出租車車輛租賃與乘客服務(wù)滿意度調(diào)查合同3篇
- 二零二五年度SEO關(guān)鍵詞研究及分析服務(wù)合同2篇
- 二零二五年度海上貨物共同海損處理合同3篇
- 二零二五年度新媒體短視頻節(jié)目制作服務(wù)協(xié)議2篇
- 豌豆的種植課程設(shè)計(jì)
- 2025年度數(shù)據(jù)中心冷卻系統(tǒng)安裝工程合同9篇
- 二零二五年度房屋買賣合同范本:維修基金結(jié)算3篇
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 07FD02防空地下室電氣設(shè)備安裝圖集
- 基礎(chǔ)會(huì)計(jì)(第7版)ppt課件完整版
- Q∕SY 1206.1-2009 油氣管道通信系統(tǒng)通用技術(shù)規(guī)范 第1部分:光傳輸系統(tǒng)
- 汽車4S店八大運(yùn)營業(yè)績指標(biāo)管控培訓(xùn)_89頁
- 設(shè)備安裝、調(diào)試及驗(yàn)收質(zhì)量保證措施
- 火力發(fā)電廠生產(chǎn)技術(shù)管理導(dǎo)則
- 汽輪機(jī)葉片振動(dòng)與分析
- 地質(zhì)工作個(gè)人述職報(bào)告三篇
- 產(chǎn)品可追溯流程圖圖
- 形意拳九歌八法釋意
評論
0/150
提交評論