新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第09講 平面向量(練)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第09講 平面向量(練)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第09講 平面向量(練)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第09講 平面向量(練)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第09講 平面向量(練)(解析版)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第01講平面向量1.已知四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用平面向量數(shù)量積的運(yùn)算律計(jì)算求值即可.【詳解】SKIPIF1<0故選:C2.若平面向量SKIPIF1<0兩兩的夾角相等,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】A【分析】根據(jù)題意,由平面向量SKIPIF1<0兩兩的夾角相等可得夾角為SKIPIF1<0或SKIPIF1<0,對(duì)夾角的取值分類討論即可求出SKIPIF1<0的值.【詳解】由平面向量SKIPIF1<0兩兩的夾角相等,得夾角為SKIPIF1<0或SKIPIF1<0,當(dāng)夾角為SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0當(dāng)夾角為SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0故選:A3.已知非零向量SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知可得出SKIPIF1<0,利用平面向量數(shù)量積的運(yùn)算性質(zhì)求出SKIPIF1<0的值,結(jié)合平面向量夾角的取值范圍可求得結(jié)果.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,因此,SKIPIF1<0.故選:C.4.在SKIPIF1<0中,點(diǎn)SKIPIF1<0在SKIPIF1<0邊上,SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)平面向量的加法法則和減法法則即可求解.【詳解】如圖所示:SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:A5.若非零向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0,得SKIPIF1<0,化簡結(jié)合已知條件和夾角公式可求出結(jié)果.【詳解】設(shè)向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0(SKIPIF1<0),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,因?yàn)榉橇阆蛄縎KIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選:C6.已知向量SKIPIF1<0且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用向量相等列方程即可求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:D7.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_____________.【答案】SKIPIF1<0【分析】根據(jù)向量的運(yùn)算公式及向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,向量SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.8.已知平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為________.【答案】SKIPIF1<0##SKIPIF1<0【分析】SKIPIF1<0可化為SKIPIF1<0,兩邊平方結(jié)合數(shù)量積的性質(zhì)可求SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,兩邊平方可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<09.已知向量SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_______.【答案】2【分析】由已知條件可得SKIPIF1<0的值,再由SKIPIF1<0可得SKIPIF1<0,通過計(jì)算即可求出SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故答案為:2.10.已知平面向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求向量SKIPIF1<0與SKIPIF1<0的夾角;(2)當(dāng)k為何值時(shí),向量SKIPIF1<0與SKIPIF1<0垂直?【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0.(2)因?yàn)橄蛄縎KIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故當(dāng)SKIPIF1<0時(shí),向量SKIPIF1<0與SKIPIF1<0垂直.11.已知向量SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的值.【解析】(1)因?yàn)镾KIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.1.已知向量SKIPIF1<0滿足SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0夾角的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意化簡得到SKIPIF1<0,得到SKIPIF1<0,結(jié)合向量的夾角公式和基本不等式,即可求解.【詳解】由題意知SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以向量SKIPIF1<0與SKIPIF1<0夾角的最大值是SKIPIF1<0.故選:B.2.SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0的值為(

)A.2 B.4 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由已知條件利用兩個(gè)向量的數(shù)量積的運(yùn)算法則求得SKIPIF1<0,再利用余弦定可得SKIPIF1<0,根據(jù)SKIPIF1<0,利用正弦定理統(tǒng)一成邊的形式化簡可得結(jié)果.【詳解】因?yàn)樵赟KIPIF1<0中,若SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以由余弦定理得SKIPIF1<0,化簡得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:B3.在等腰梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)平面向量的共線定理、平面向量的加法的幾何意義,結(jié)合已知和等腰梯形的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)樵诘妊菪蜸KIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以可得:SKIPIF1<0.故選:B.4.在SKIPIF1<0中,已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0為()A.等邊三角形B.直角三角形C.等腰三角形D.三邊均不相等的三角形【答案】A【分析】由SKIPIF1<0推出SKIPIF1<0,由SKIPIF1<0求得角SKIPIF1<0,則答案可求.【詳解】解:SKIPIF1<0,SKIPIF1<0分別表示SKIPIF1<0,SKIPIF1<0方向上的單位向量,SKIPIF1<0在SKIPIF1<0的角平分線上,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0是等邊三角形.故選:A.5.已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(

)A.5 B.10 C.15 D.20【答案】A【分析】根據(jù)SKIPIF1<0,利用坐標(biāo)運(yùn)算求得x,進(jìn)而得到SKIPIF1<0的坐標(biāo),再利用數(shù)量積的坐標(biāo)運(yùn)算求解.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選:A6.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為平面內(nèi)任意三點(diǎn),則“SKIPIF1<0與SKIPIF1<0的夾角為鈍角”是“SKIPIF1<0”的(

)A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件【答案】B【分析】設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,利用利用數(shù)量積的運(yùn)算性質(zhì)及余弦定理,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0的夾角為鈍角時(shí),SKIPIF1<0因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為鈍角或SKIPIF1<0,所以“SKIPIF1<0與SKIPIF1<0的夾角為鈍角”是“SKIPIF1<0”的充分不必要條件,故選:B7.已知任意平面向量SKIPIF1<0,把SKIPIF1<0繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0角得到向量SKIPIF1<0,叫做把點(diǎn)SKIPIF1<0繞點(diǎn)SKIPIF1<0沿逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0角得到點(diǎn)SKIPIF1<0.已知平面內(nèi)點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0,把點(diǎn)SKIPIF1<0繞點(diǎn)SKIPIF1<0沿逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0得到點(diǎn)SKIPIF1<0,則向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為___________.(用坐標(biāo)作答)【答案】SKIPIF1<0【分析】設(shè)點(diǎn)SKIPIF1<0,求出SKIPIF1<0,再利用投影向量的公式求解.【詳解】解:設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,根據(jù)題意若將SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0,即可得SKIPIF1<0,故SKIPIF1<0,整理得SKIPIF1<0,而由A、B兩點(diǎn)坐標(biāo)可知SKIPIF1<0,故:SKIPIF1<0,解得SKIPIF1<0,則點(diǎn)P的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0.所以向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0故答案為:SKIPIF1<08.已知SKIPIF1<0是拋物線SKIPIF1<0上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),若SKIPIF1<0,則SKIPIF1<0______.【答案】2023【分析】設(shè)SKIPIF1<0,由SKIPIF1<0求出SKIPIF1<0,再利用拋物線的定義求解.【詳解】解:設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0是拋物線SKIPIF1<0上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),所以SKIPIF1<0,因此SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.又由拋物線的定義,可得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:20239.已知SKIPIF1<0為SKIPIF1<0內(nèi)一點(diǎn),且滿足SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的________心.【答案】重【分析】如圖,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,利用向量的加減法運(yùn)算得到SKIPIF1<0與SKIPIF1<0共線,進(jìn)一步得到SKIPIF1<0三點(diǎn)共線,且SKIPIF1<0,結(jié)合重心的性質(zhì)可判斷SKIPIF1<0為SKIPIF1<0的重心.【詳解】如圖,取SKIPIF1<0的中點(diǎn)SKIPIF1<0由SKIPIF1<0.得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0共線,又SKIPIF1<0,SKIPIF1<0有公共點(diǎn)SKIPIF1<0,故SKIPIF1<0三點(diǎn)共線,且SKIPIF1<0,因此可得SKIPIF1<0為SKIPIF1<0的重心.故答案為:重.10.如圖,在平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,E為邊SKIPIF1<0的中點(diǎn),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0##0.125【分析】將SKIPIF1<0和SKIPIF1<0利用線性運(yùn)算表示成SKIPIF1<0和SKIPIF1<0,運(yùn)用數(shù)量積運(yùn)算即可得到答案【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,故答案為:SKIPIF1<0三、解答題11.如圖所示,在SKIPIF1<0中,SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0.(1)用SKIPIF1<0和SKIPIF1<0分別表示SKIPIF1<0和SKIPIF1<0;(2)若SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0和SKIPIF1<0的值.【解析】(1)由SKIPIF1<0,可得SKIPIF1<0.SKIPIF1<0(2)設(shè)SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.12.已知SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn)(1)若SKIPIF1<0,求向量SKIPIF1<0與向量SKIPIF1<0的夾角的余弦值;(2)若SKIPIF1<0是線段SKIPIF1<0上的任意一點(diǎn),且SKIPIF1<0,求SKIPIF1<0的最小值.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0所在直線為SKIPIF1<0軸,建立平面直角坐標(biāo)系,如圖所示.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,設(shè)向量SKIPIF1<0與向量SKIPIF1<0的夾角為SKIPIF1<0,所以SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0.1.(2022年全國新高考II卷數(shù)學(xué)試題)已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.6【答案】C【分析】利用向量的運(yùn)算和向量的夾角的余弦公式的坐標(biāo)形式化簡即可求得【詳解】解:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:C2.(2022年全國高考乙卷數(shù)學(xué)(文)試題)已知向量SKIPIF1<0,則SKIPIF1<0(

)A.2 B.3 C.4 D.5【答案】D【分析】先求得SKIPIF1<0,然后求得SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:D3.(2022年北京市高考數(shù)學(xué)試題)在SKIPIF1<0中,SKIPIF1<0.P為SKIPIF1<0所在平面內(nèi)的動(dòng)點(diǎn),且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】依題意建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,表示出SKIPIF1<0,SKIPIF1<0,根據(jù)數(shù)量積的坐標(biāo)表示、輔助角公式及正弦函數(shù)的性質(zhì)計(jì)算可得;【詳解】解:依題意如圖建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運(yùn)動(dòng),設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;故選:D4.(2022年全國高考乙卷數(shù)學(xué)(理)試題)已知向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】C【分析】根據(jù)給定模長,利用向量的數(shù)量積運(yùn)算求解即可.【詳解】解:∵SKIPIF1<0,又∵SKIPIF1<0∴9SKIPIF1<0,∴SKIPIF1<0故選:C.5.(2022年全國新高考II卷數(shù)學(xué)試題)已知O為坐標(biāo)原點(diǎn),過拋物線SKIPIF1<0焦點(diǎn)F的直線與C交于A,B兩點(diǎn),其中A在第一象限,點(diǎn)SKIPIF1<0,若SKIPIF1<0,則(

)A.直線SKIPIF1<0的斜率為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】由SKIPIF1<0及拋物線方程求得SKIPIF1<0,再由斜率公式即可判斷A選項(xiàng);表示出直線SKIPIF1<0的方程,聯(lián)立拋物線求得SKIPIF1<0,即可求出SKIPIF1<0判斷B選項(xiàng);由拋物線的定義求出SKIPIF1<0即可判斷C選項(xiàng);由SKIPIF1<0,SKIPIF1<0求得SKIPIF1<0,SKIPIF1<0為鈍角即可判斷D選項(xiàng).【詳解】對(duì)于A,易得SKIPIF1<0,由SKIPIF1<0可得點(diǎn)SKIPIF1<0在SKIPIF1<0的垂直平分線上,則SKIPIF1<0點(diǎn)橫坐標(biāo)為SKIPIF1<0,代入拋物線可得SKIPIF1<0,則SKIPIF1<0,則直線SKIPIF1<0的斜率為SKIPIF1<0,A正確;對(duì)于B,由斜率為SKIPIF1<0可得直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立拋物線方程得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,代入拋物線得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,B錯(cuò)誤;對(duì)于C,由拋物線定義知:SKIPIF1<0,C正確;對(duì)于D,SKIPIF1<0,則SKIPIF1<0為鈍角,又SKIPIF1<0,則SKIPIF1<0為鈍角,又SKIPIF1<0,則SKIPIF1<0,D正確.故選:ACD.6.(2022年高考天津卷(回憶版)數(shù)學(xué)真題)在SKIPIF1<0中,SKIPIF1<0,D是AC中點(diǎn),SKIPIF1<0,試用SKIPIF1<0表示SKIPIF1<0為___________,若SKIPIF1<0,則SKIPIF1<0的最大值為____________【答案】SKIPIF1<0

SKIPIF1<0【分析】法一:根據(jù)向量的減法以及向量的數(shù)乘即可表示出SKIPIF1<0,以SKIPIF1<0為基底,表示出SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,再根據(jù)向量夾角公式以及基本不等式即可求出.法二:以點(diǎn)SKIPIF1<0為原點(diǎn)建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,由SKIPIF1<0可得點(diǎn)SKIPIF1<0的軌跡為以SKIPIF1<0為圓心,以SKIPIF1<0為半徑的圓,方程為SKIPIF1<0,即可根據(jù)幾何性質(zhì)可知,當(dāng)且僅當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),SKIPIF1<0最大,即求出.【詳解】方法一:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),而SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論