版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆北師大二附中西城實驗校中考數(shù)學適應性模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為()A. B. C. D.2.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<43.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.4.已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是()A.1一定不是關(guān)于x的方程x2+bx+a=0的根B.0一定不是關(guān)于x的方程x2+bx+a=0的根C.1和﹣1都是關(guān)于x的方程x2+bx+a=0的根D.1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根5.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(,4),則△AOC的面積為A.12 B.9 C.6 D.46.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.7.如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米8.關(guān)于x的方程12x=kA.0或129.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結(jié)果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.10.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.a(chǎn)、b、c是實數(shù),點A(a+1、b)、B(a+2,c)在二次函數(shù)y=x2﹣2ax+3的圖象上,則b、c的大小關(guān)系是b____c(用“>”或“<”號填空)12.已知拋物線y=-x2+mx+2-m,在自變量x的值滿足-1≤x≤2的情況下.若對應的函數(shù)值y的最大值為6,則m的值為__________.13.已知,直接y=kx+b(k>0,b>0)與x軸、y軸交A、B兩點,與雙曲線y=(x>0)交于第一象限點C,若BC=2AB,則S△AOB=________.14.若,,則代數(shù)式的值為__________.15.已知二次函數(shù),與的部分對應值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關(guān)于的方程的解為;④.其中,正確的有___________________.16.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結(jié)果保留π)三、解答題(共8題,共72分)17.(8分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.18.(8分)關(guān)于x的一元二次方程x2﹣x﹣(m+2)=0有兩個不相等的實數(shù)根.求m的取值范圍;若m為符合條件的最小整數(shù),求此方程的根.19.(8分)已知:如圖,E是BC上一點,AB=EC,AB∥CD,BC=CD.求證:AC=ED.20.(8分)如圖,?ABCD的對角線AC,BD相交于點O.E,F(xiàn)是AC上的兩點,并且AE=CF,連接DE,BF.(1)求證:△DOE≌△BOF;(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.21.(8分)中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:(1)本次調(diào)查了名學生,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為度,并補全條形統(tǒng)計圖;(2)此中學共有1600名學生,通過計算預估其中4部都讀完了的學生人數(shù);(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.22.(10分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;設射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.23.(12分)已知.(1)化簡A;(2)如果a,b是方程的兩個根,求A的值.24.如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)已知三點和近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0)可以大致畫出函數(shù)圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數(shù)據(jù)描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉(zhuǎn)角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節(jié)省燃氣.故選:C,【點睛】本題考查了二次函數(shù)的應用,二次函數(shù)的圖像性質(zhì),熟練掌握二次函數(shù)圖像對稱性質(zhì),判斷對稱軸位置是解題關(guān)鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.2、C【解析】
先根據(jù)正方形的面積公式求邊長,再根據(jù)無理數(shù)的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數(shù)的理解,會估算無理數(shù)的大小是解題的關(guān)鍵.3、C【解析】試題解析:左視圖如圖所示:故選C.4、D【解析】
根據(jù)方程有兩個相等的實數(shù)根可得出b=a+1或b=-(a+1),當b=a+1時,-1是方程x2+bx+a=0的根;當b=-(a+1)時,1是方程x2+bx+a=0的根.再結(jié)合a+1≠-(a+1),可得出1和-1不都是關(guān)于x的方程x2+bx+a=0的根.【詳解】∵關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,∴,∴b=a+1或b=-(a+1).當b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關(guān)于x的方程x2+bx+a=0的根.故選D.【點睛】本題考查了根的判別式以及一元二次方程的定義,牢記“當△=0時,方程有兩個相等的實數(shù)根”是解題的關(guān)鍵.5、B【解析】∵點,是中點∴點坐標∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標為-6又∵點在雙曲線∴點坐標為∴從而,故選B6、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結(jié)論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關(guān)系.7、C【解析】
過點A作AD⊥BC于點D.根據(jù)三角函數(shù)關(guān)系求出BD、CD的長,進而可求出BC的長.【詳解】如圖所示,過點A作AD⊥BC于點D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.【點睛】本題主要考查三角函數(shù),解答本題的關(guān)鍵是熟練掌握三角函數(shù)的有關(guān)知識,并牢記特殊角的三角函數(shù)值.8、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當整式方程無解時,2k-1=0,k=12當分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.9、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.10、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;
C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;
D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.
故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、<【解析】試題分析:將二次函數(shù)y=x2-2ax+3轉(zhuǎn)換成y=(x-a)2-a2+3,則它的對稱軸是x=a,拋物線開口向上,所以在對稱軸右邊y隨著x的增大而增大,點A點B均在對稱軸右邊且a+1<a+2,所以b<c.12、m=8或-【解析】
求出拋物線的對稱軸x=-b2a=【詳解】拋物線的對稱軸x=-b當m2<-1,即m<-2時,拋物線在-1≤x≤2時,y隨x的增大而減小,在x=-1時取得最大值,即y=--1當-1≤m2≤2,即-2≤m≤4時,拋物線在-1≤x≤2時,在x=當m2>2,即m>4時,拋物線在-1≤x≤2時,y隨x的增大而增大,在x=2時取得最大值,即y=-2綜上所述,m的值為8或-故答案為:8或-【點睛】考查二次函數(shù)的圖象與性質(zhì),注意分類討論,不要漏解.13、【解析】
根據(jù)題意可設出點C的坐標,從而得到OA和OB的長,進而得到△AOB的面積即可.【詳解】∵直接y=kx+b與x軸、y軸交A、B兩點,與雙曲線y=交于第一象限點C,若BC=2AB,設點C的坐標為(c,)∴OA=0.5c,OB==,∴S△AOB===【點睛】此題主要考查反比例函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意設出C點坐標進行求解.14、-12【解析】分析:對所求代數(shù)式進行因式分解,把,,代入即可求解.詳解:,,,故答案為:點睛:考查代數(shù)式的求值,掌握提取公因式法和公式法進行因式分解是解題的關(guān)鍵.15、①③.【解析】
根據(jù)圖表求出函數(shù)對稱軸,再根據(jù)圖表信息和二次函數(shù)性質(zhì)逐一判斷即可.【詳解】由二次函數(shù)y=ax2+bx+c(a≠0),y與x的部分對應值可知:該函數(shù)圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結(jié)論正確;②b2﹣4ac=0,結(jié)論錯誤,應該是b2﹣4ac>0;③關(guān)于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結(jié)論正確;④m=﹣3,結(jié)論錯誤,其中,正確的有.①③故答案為:①③【點睛】本題考查了二次函數(shù)的圖像,結(jié)合圖表信息是解題的關(guān)鍵.16、18π【解析】
根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關(guān)鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.三、解答題(共8題,共72分)17、(1)見解析;(2)1【解析】
(1)由矩形的性質(zhì)可知∠A=∠C=90°,由翻折的性質(zhì)可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點睛】本題考查了折疊的性質(zhì)、全等三角形的判定和性質(zhì)以及勾股定理的綜合運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.18、(1)m>;(2)x1=0,x2=1.【解析】
解答本題的關(guān)鍵是是掌握好一元二次方程的根的判別式.(1)求出△=5+4m>0即可求出m的取值范圍;(2)因為m=﹣1為符合條件的最小整數(shù),把m=﹣1代入原方程求解即可.【詳解】解:(1)△=1+4(m+2)=9+4m>0∴.(2)∵為符合條件的最小整數(shù),∴m=﹣2.∴原方程變?yōu)椤鄕1=0,x2=1.考點:1.解一元二次方程;2.根的判別式.19、見解析【解析】試題分析:已知AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠B=∠ECD,再根據(jù)SAS證明△ABC≌△ECD全,由全等三角形對應邊相等即可得AC=ED.試題解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.考點:平行線的性質(zhì);全等三角形的判定及性質(zhì).20、(2)證明見解析;(2)四邊形EBFD是矩形.理由見解析.【解析】分析:(1)根據(jù)SAS即可證明;(2)首先證明四邊形EBFD是平行四邊形,再根據(jù)對角線相等的平行四邊形是矩形即可證明;【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)結(jié)論:四邊形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四邊形EBFD是平行四邊形,∵BD=EF,∴四邊形EBFD是矩形.點睛:本題考查平行四邊形的性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)40、126(2)240人(3)【解析】
(1)用2部的人數(shù)10除以2部人數(shù)所占的百分比25%即可求出本次調(diào)查的學生數(shù),根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°,即可得到“1部”所在扇形的圓心角;(2)用1600乘以4部所占的百分比即可;(3)根據(jù)樹狀圖所得的結(jié)果,判斷他們選中同一名著的概率.【詳解】(1)調(diào)查的總?cè)藬?shù)為:10÷25%=40,∴1部對應的人數(shù)為40﹣2﹣10﹣8﹣6=14,則扇形統(tǒng)計圖中“1部”所在扇形的圓心角為:×360°=126°;故答案為40、126;(2)預估其中4部都讀完了的學生有1600×=240人;(3)將《西游記》、《三國演義》、《水滸傳》、《紅樓夢》分別記作A,B,C,D,畫樹狀圖可得:共有16種等可能的結(jié)果,其中選中同一名著的有4種,故P(兩人選中同一名著)==.【點睛】本題考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的綜合,用樣本估計總體,列表法或樹狀圖法求概率.解答此類題目,要善于發(fā)現(xiàn)二者之間的關(guān)聯(lián)點,即兩個統(tǒng)計圖都知道了哪個量的數(shù)據(jù),從而用條形統(tǒng)計圖中的具體數(shù)量除以扇形統(tǒng)計圖中占的百分比,求出樣本容量,進而求解其它未知的量.22、(1)證明見解析(2)(3)EP+EQ=EC【解析】
(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點睛】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當輔助線構(gòu)造全等三角形.23、(1);(2)-.【解析】
(1)先通分,再根據(jù)同分母的分式相加減求出即可;(2)根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】(1)A=﹣==;(2)∵a,b是方程的兩個根,∴a+b=4,ab=-12,∴.【點睛】本題考查了分式的加減和根與系數(shù)的關(guān)系,能正確根據(jù)分式的運算法則進行化簡是解答此題的關(guān)鍵.24、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年公司資產(chǎn)轉(zhuǎn)讓協(xié)議模板
- 2024年度旅游大巴租賃服務協(xié)議
- 2024年員工派遣服務協(xié)議
- 2024賽季足球場租賃協(xié)議范本
- 2024年建設工程委托代理協(xié)議
- 2024年科技支持服務協(xié)議樣本
- 2024隔音設施安裝及施工協(xié)議樣本
- 店鋪租賃經(jīng)營規(guī)范協(xié)議2024年
- 2024年采購協(xié)議模板與協(xié)議細則
- 2024年店面房租賃協(xié)議樣本
- 古希臘文明智慧樹知到期末考試答案章節(jié)答案2024年復旦大學
- 2024年山東濟南地鐵招聘筆試參考題庫含答案解析
- 醫(yī)療護理品管圈QCC成果匯報之提高住院病人健康宣教的知曉率(問題解決型)
- 日照市重點支柱產(chǎn)業(yè)情況
- 兒童過敏性休克ppt課件
- 安全生產(chǎn)文明施工措施費用明細報表范文
- 腹腔鏡設備的使用和保養(yǎng)PPT課件
- PRTV方案(完整范本)
- 知識產(chǎn)權(quán)貫標工作總結(jié)
- 窗邊的小豆豆.ppt
- 水的電離和溶液的酸堿性pH的應用與計算
評論
0/150
提交評論