山東省棗莊市第四十一中學2022年高三沖刺模擬數(shù)學試卷含解析_第1頁
山東省棗莊市第四十一中學2022年高三沖刺模擬數(shù)學試卷含解析_第2頁
山東省棗莊市第四十一中學2022年高三沖刺模擬數(shù)學試卷含解析_第3頁
山東省棗莊市第四十一中學2022年高三沖刺模擬數(shù)學試卷含解析_第4頁
山東省棗莊市第四十一中學2022年高三沖刺模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+12.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.3.已知是等差數(shù)列的前項和,若,設,則數(shù)列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.20174.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則下述四個結論:①②③④點為函數(shù)的一個對稱中心其中所有正確結論的編號是()A.①②③ B.①③④ C.①②④ D.②③④5.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.6.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.7.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.68.為研究語文成績和英語成績之間是否具有線性相關關系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據(jù)圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值9.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.10.等比數(shù)列的前項和為,若,,,,則()A. B. C. D.11.已知雙曲線()的漸近線方程為,則()A. B. C. D.12.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知為雙曲線:的左焦點,直線經(jīng)過點,若點,關于直線對稱,則雙曲線的離心率為__________.14.已知函數(shù)的部分圖象如圖所示,則的值為____________.15.在平面直角坐標系中,曲線上任意一點到直線的距離的最小值為________.16.已知兩動點在橢圓上,動點在直線上,若恒為銳角,則橢圓的離心率的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù),其中是自然對數(shù)的底數(shù).(Ⅰ)若在上存在兩個極值點,求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點為,證明:.18.(12分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,,證明:.19.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.20.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.21.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關法規(guī)宣傳普及的關系,對某試點社區(qū)抽取戶居民進行調查,得到如下的列聯(lián)表.分類意識強分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關?說明你的理由;(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學期望.參考公式:,其中.下面的臨界值表僅供參考22.(10分)已知圓O經(jīng)過橢圓C:的兩個焦點以及兩個頂點,且點在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點,且,求直線l的傾斜角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.2.D【解析】

設等比數(shù)列的公比為q,,運用等比數(shù)列的性質和通項公式,以及等差數(shù)列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.3.B【解析】

根據(jù)題意計算,,,計算,,,得到答案.【詳解】是等差數(shù)列的前項和,若,故,,,,故,當時,,,,,當時,,故前項和最大.故選:.【點睛】本題考查了數(shù)列和的最值問題,意在考查學生對于數(shù)列公式方法的綜合應用.4.B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質的應用,三角函數(shù)的變換規(guī)則,屬于基礎題.5.A【解析】

直線的方程為,令,得,得到a,b的關系,結合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關系以及雙曲線的標準方程,考查運算求解能力.6.B【解析】

根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應用,以及三角函數(shù)的圖像的性質的應用,題目比較綜合.7.B【解析】

利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.8.B【解析】

根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).9.C【解析】

根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.10.D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數(shù)列.11.A【解析】

根據(jù)雙曲線方程(),確定焦點位置,再根據(jù)漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.12.D【解析】

設,,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質,考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由點,關于直線對稱,得到直線的斜率,再根據(jù)直線過點,可求出直線方程,又,中點在直線上,代入直線的方程,化簡整理,即可求出結果.【詳解】因為為雙曲線:的左焦點,所以,又點,關于直線對稱,,所以可得直線的方程為,又,中點在直線上,所以,整理得,又,所以,故,解得,因為,所以.故答案為【點睛】本題主要考查雙曲線的簡單性質,先由兩點對稱,求出直線斜率,再由焦點坐標求出直線方程,根據(jù)中點在直線上,即可求出結果,屬于??碱}型.14.【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數(shù)值,考查學生識圖、計算等能力,是一道中檔題.15.【解析】

解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標,再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當且僅當時,即當時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導數(shù)法):曲線的函數(shù)解析式為,則,設過曲線上任意一點的切線與直線平行,則,解得,當時,到直線的距離;當時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉化為利用切線與直線平行來找出切點,轉化為切點到直線的距離,也可以設曲線上的動點坐標,利用基本不等式法或函數(shù)的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.16.【解析】

根據(jù)題意可知圓上任意一點向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點向橢圓所引的兩條切線互相垂直,因此當直線與圓相離時,恒為銳角,故,解得從而離心率.故答案為:【點睛】本題主要考查了橢圓的幾何性質,考查了邏輯分析能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數(shù)研究的單調性、極值,從而得到參數(shù)的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設,即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個極值點,等價于在有兩個不等實根,由可得,,令,則,令,可得,當時,,所以在上單調遞減,且當時,單調遞增;當時,單調遞減;所以是的極大值也是最大值,又當,當大于0趨向與0,要使在有兩個根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設,即證:要證,只需證:令,則在上為增函數(shù),即成立;要證,只需證明:令,則在上為減函數(shù),,即成立成立,所以成立.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性、極值,利用導數(shù)證明不等式,屬于難題;18.(1)(2)詳見解析【解析】

(1)將原不等式轉化為,構造函數(shù),求得的最大值即可;

(2)首先通過求導判斷的單調區(qū)間,考查兩根的取值范圍,再構造函數(shù),將問題轉化為證明,探究在區(qū)間內的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調遞增,在上單調遞減,,的取值范圍是;(2)證明:不妨設,當時,單調遞增,當時,單調遞減,,當時,,,要證,即證,由在上單調遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調遞增,由,故當時,,故,證畢.【點睛】本題考查利用導數(shù)研究函數(shù)單調性,最值等,關鍵是要對問題進行轉化,比如把恒成立問題轉化為最值問題,把根的個數(shù)問題轉化為圖像的交點個數(shù),進而轉化為證明不等式的問題,屬難題.19.(1)故函數(shù)在上單調遞增,在上單調遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導后根據(jù)導函數(shù)的符號判斷單調性.(Ⅱ)分析題意可得對任意,恒成立,構造函數(shù),則有對任意,恒成立,然后通過求函數(shù)的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數(shù)在上單調遞增;當時,令,解得;令,解得.故函數(shù)在上單調遞增,在上單調遞減.綜上,當時,函數(shù)在上單調遞增;當時,函數(shù)在上單調遞增,在上單調遞減.(II)由題意知.,當時,函數(shù)單調遞增.不妨設,又函數(shù)單調遞減,所以原問題等價于:當時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調遞增,所以函數(shù)在上的最大值為.由,解得.故實數(shù)的最小值為.20.(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數(shù)的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設:證明:x+y-2xy==令,∴原式====當時,21.(1)有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.見解析(2)分布列見解析,期望為1.【解析】

(1)由在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為可得列聯(lián)表,然后計算后可得結論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機抽取戶,到分類意識強的概率為,可得分類意識強的有戶,故可得列聯(lián)表如下:分類意識強分類意識弱合計試點后試

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論