版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第03講基本不等式(精講+精練)目錄第一部分:思維導(dǎo)圖(總覽全局)第二部分:知識點精準(zhǔn)記憶第三部分:課前自我評估測試第四部分:典型例題剖析高頻考點一:利用基本不等式求最值①湊配法②“1”的代入法③二次與二次(一次)商式(換元法)④條件等式求最值高頻考點二:利用基本不等式求參數(shù)值或取值范圍高頻考點三:利用基本不等式解決實際問題高頻考點四:基本不等式等號不成立,優(yōu)先對鉤函數(shù)第五部分:高考真題感悟第六部分:第03講基本不等式(精練)第一部分:思維導(dǎo)圖總覽全局第一部分:思維導(dǎo)圖總覽全局第二部分:知識點精準(zhǔn)記憶第二部分:知識點精準(zhǔn)記憶1、基本不等式(一正,二定,三相等,特別注意“一正”,“三相等”這兩類陷阱)①如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.②其中SKIPIF1<0叫做正數(shù)SKIPIF1<0,SKIPIF1<0的幾何平均數(shù);SKIPIF1<0叫做正數(shù)SKIPIF1<0,SKIPIF1<0的算數(shù)平均數(shù).2、兩個重要的不等式①SKIPIF1<0(SKIPIF1<0)當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.②SKIPIF1<0(SKIPIF1<0)當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.3、利用基本不等式求最值①已知SKIPIF1<0,SKIPIF1<0是正數(shù),如果積SKIPIF1<0等于定值SKIPIF1<0,那么當(dāng)且僅當(dāng)SKIPIF1<0時,和SKIPIF1<0有最小值SKIPIF1<0;②已知SKIPIF1<0,SKIPIF1<0是正數(shù),如果和SKIPIF1<0等于定值SKIPIF1<0,那么當(dāng)且僅當(dāng)SKIPIF1<0時,積SKIPIF1<0有最大值SKIPIF1<0;4、常用技巧利用基本不等式求最值的變形技巧——湊、拆(分子次數(shù)高于分母次數(shù))、除(分子次數(shù)低于分母次數(shù)))、代(1的代入)、解(整體解).①湊:湊項,例:SKIPIF1<0;湊系數(shù),例:SKIPIF1<0;②拆:例:SKIPIF1<0;③除:例:SKIPIF1<0;④1的代入:例:已知SKIPIF1<0,求SKIPIF1<0的最小值.解析:SKIPIF1<0.⑤整體解:例:已知SKIPIF1<0,SKIPIF1<0是正數(shù),且SKIPIF1<0,求SKIPIF1<0的最小值.解析:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.第三部分:課前自我評估測試第三部分:課前自我評估測試一、判斷題1.(2022·江西·貴溪市實驗中學(xué)高二期末)當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為4
()【答案】錯誤解:由SKIPIF1<0得到SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0為減函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,故答案為:錯誤.2.(2021·江西·貴溪市實驗中學(xué)高二階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0()【答案】正確∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,取等號,故SKIPIF1<0的最大值為SKIPIF1<0.故答案為:正確二、單選題1.(2022·江西·高一階段練習(xí))當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時等號成立.)可得當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0故選:D2.(2022·湖南湖南·二模)函數(shù)SKIPIF1<0的最小值為(
)A.3 B.2 C.1 D.0【答案】D因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,利用基本不等式可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時等號成立.故選:D.3.(2022·湖南·高一階段練習(xí))已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.2 B.5 C.SKIPIF1<0 D.SKIPIF1<0【答案】D因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.所以SKIPIF1<0的最大值為SKIPIF1<0.故選:D4.(2022·新疆·烏蘇市第一中學(xué)高一開學(xué)考試)下列函數(shù),最小值為2的函數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D對A,SKIPIF1<0可取負(fù)數(shù),故A錯誤;對B,SKIPIF1<0,故B錯誤;對C,SKIPIF1<0,故C錯誤;對D,SKIPIF1<0,等號成立當(dāng)且僅當(dāng)SKIPIF1<0,故D正確;故選:D第四部分:典型例題剖析第四部分:典型例題剖析高頻考點一:利用基本不等式求最值①湊配法1.(2022·北京大興·高一期末)當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0,SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最大值為SKIPIF1<0故選:B2.(2022·山西·懷仁市第一中學(xué)校二模(文))函數(shù)SKIPIF1<0的最小值為(
)A.8 B.7 C.6 D.5【答案】D因為SKIPIF1<0,所以3x-1>0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即x=1時等號成立,故函數(shù)SKIPIF1<0的最小值為5.故選:D.3.(2022·安徽省蚌埠第三中學(xué)高一開學(xué)考試)已知x>3,則對于SKIPIF1<0,下列說法正確的是(
)A.y有最大值7 B.y有最小值7 C.y有最小值4 D.y有最大值4【答案】B解:因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以SKIPIF1<0有最小值SKIPIF1<0;故選:B4.(2022·江蘇省天一中學(xué)高一期末)設(shè)實數(shù)SKIPIF1<0滿足SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為(
)A.3 B.4 C.5 D.6【答案】ASKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號.因此函數(shù)SKIPIF1<0的最小值為3.故選:A.5.(2022·上海虹口·高一期末)已知SKIPIF1<0,則SKIPIF1<0的最大值為______.【答案】4因SKIPIF1<0,則SKIPIF1<0,于是得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取“=”,所以SKIPIF1<0的最大值為4.故答案為:4②“1”的代入法1.(2022·河南·夏邑第一高級中學(xué)高二期末(文))已知SKIPIF1<0,SKIPIF1<0均為正數(shù),若SKIPIF1<0,則當(dāng)SKIPIF1<0取得最小值時,SKIPIF1<0的值為(
)A.16 B.4 C.24 D.12【答案】A因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,又因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A.2.(2022·安徽·高三階段練習(xí)(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.1 B.2 C.4 D.6【答案】C解:因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號;故選:C3.(2022·四川·瀘縣五中高二開學(xué)考試(文))已知SKIPIF1<0為正實數(shù),且SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0##SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立.故答案為:SKIPIF1<04.(2022·廣西桂林·高一期末)已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是___________.【答案】16因為SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0當(dāng)且僅當(dāng),SKIPIF1<0,即SKIPIF1<0時,取“=”號,所以SKIPIF1<0的最小值為16.故答案為:165.(2022·天津·南開中學(xué)高一期末)已知SKIPIF1<0,則SKIPIF1<0的最小值為_______________.【答案】SKIPIF1<0##2.25解:因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.③二次與二次(一次)商式1.(2022·全國·高三專題練習(xí)(理))若SKIPIF1<0,則SKIPIF1<0有(
)A.最大值SKIPIF1<0 B.最小值SKIPIF1<0 C.最大值SKIPIF1<0 D.最小值SKIPIF1<0【答案】A因SKIPIF1<0,則SKIPIF1<0,于是得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取“=”,所以當(dāng)SKIPIF1<0時,SKIPIF1<0有最大值SKIPIF1<0.故選:A2.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的最大值為(
)A.3 B.2 C.1 D.-1【答案】DSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0等號成立.故選:D.3.(2022·江西南昌·高一期末)當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0因為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·上?!じ呷龑n}練習(xí))若SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為___________.【答案】3由題意,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立.所以函數(shù)SKIPIF1<0的最小值為3.故答案為:3.5.(2021·江西·寧岡中學(xué)高一階段練習(xí)(理))SKIPIF1<0的最大值為______.【答案】SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立.所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.6.(2022·全國·高三專題練習(xí))求下列函數(shù)的最小值(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)3;(2)10.(1)SKIPIF1<0∵SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即x=1時取等號)SKIPIF1<0SKIPIF1<0的最小值為3;(2)令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0即t=3時取等號SKIPIF1<0y的最小值為10④條件等式求最值1.(2022·陜西咸陽·高二期末(文))已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則xy的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C因為SKIPIF1<0,SKIPIF1<0,由基本不等式得:SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,等號成立故選:C2.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.4 B.8 C.7 D.6【答案】D【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,解得SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0的最小值為6故選:D3.(2022·江蘇·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0且滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.4 B.6 C.8 D.10【答案】C由SKIPIF1<0可得SKIPIF1<0,又因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為8,故選:C【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.4.(2022·安徽蕪湖·高一期末)已知正數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最小值為_________【答案】8由題意,正實數(shù)SKIPIF1<0,由SKIPIF1<0(SKIPIF1<0時等號成立),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍),SKIPIF1<0,(SKIPIF1<0取最小值)所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<05.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0的最小值為_______.【答案】SKIPIF1<0##SKIPIF1<0∵SKIPIF1<0,且滿足SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<06.(2022·重慶·高一期末)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】4解:由題知SKIPIF1<0由基本不等式得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為4.故答案為:4.7.(2022·廣東廣州·高一期末)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】6由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立),又因SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.因此當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值6.故答案為:6.高頻考點二:利用基本不等式求參數(shù)值或取值范圍1.(2022·全國·高三專題練習(xí))當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D當(dāng)SKIPIF1<0時,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時取等號),SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.2.(2022·浙江·高三專題練習(xí))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,則SKIPIF1<0,由基本不等式可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以,SKIPIF1<0.故選:B.3.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,若不等式SKIPIF1<0恒成立,則m的最大值為(
)A.10 B.12 C.16 D.9【答案】D由已知SKIPIF1<0,SKIPIF1<0,若不等式SKIPIF1<0恒成立,所以SKIPIF1<0恒成立,轉(zhuǎn)化成求SKIPIF1<0的最小值,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等所以SKIPIF1<0.故選:D.4.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立;又不等式SKIPIF1<0恒成立,所以只需SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:A.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.5.(2022·全國·高三專題練習(xí))若對任意SKIPIF1<0恒成立,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時取等號,因為SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0;故選:C6.(2022·甘肅·無高二期末(文))已知正實數(shù)a,b滿足SKIPIF1<0,若不等式SKIPIF1<0對任意的實數(shù)x恒成立,則實數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號.由題意,得SKIPIF1<0,即SKIPIF1<0對任意的實數(shù)x恒成立,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:D.7.(2022·全國·高三專題練習(xí))若對任意SKIPIF1<0,SKIPIF1<0恒成立,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A由題意,對任意SKIPIF1<0,則有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,即SKIPIF1<0的最大值為SKIPIF1<0,又由對任意SKIPIF1<0時,SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.高頻考點三:利用基本不等式解決實際問題1.(2022·北京市十一學(xué)校高二期末)某公司要建造一個長方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價為15元,箱壁每1m2造價為12元,則箱子的最低總造價為()A.72元 B.300元 C.512元 D.816元【答案】D設(shè)這個箱子的箱底的長為xm,則寬為SKIPIF1<0m,設(shè)箱子總造價為f(x)元,∴f(x)=15×16+12×3(2xSKIPIF1<0)=72(xSKIPIF1<0)+240≥144SKIPIF1<0240=816,當(dāng)且僅當(dāng)xSKIPIF1<0,即x=4時,f(x)取最小值816元.故選:D.2.(2022·河南開封·高一期末)中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個三角形,邊長分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,三角形的面積SKIPIF1<0可由公式SKIPIF1<0求得,其中SKIPIF1<0為三角形周長的一半,這個公式也被稱為海倫秦九韶公式,現(xiàn)有一個三角形的邊長滿足SKIPIF1<0,SKIPIF1<0,則此三角形面積的最大值為(
)A.6 B.SKIPIF1<0 C.12 D.SKIPIF1<0【答案】B由題意得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,故選:B.3.(2022·江蘇常州·高一期末)2021年初,某地區(qū)甲、乙、丙三位經(jīng)銷商出售鋼材的原價相同.受鋼材進(jìn)價普遍上漲的影響,甲、乙計劃分兩次提價,丙計劃一次提價.設(shè)SKIPIF1<0,甲第一次提價SKIPIF1<0,第二次提價SKIPIF1<0;乙兩次均提價SKIPIF1<0;丙一次性提價SKIPIF1<0.各經(jīng)銷商提價計劃實施后,鋼材售價由高到低的經(jīng)銷商依次為(
)A.乙、甲、丙 B.甲、乙、丙C.乙、丙、甲 D.丙、甲、乙【答案】A設(shè)提價前價格為1,則甲提價后的價格為:SKIPIF1<0,乙提價后價格為:SKIPIF1<0,丙提價后價格為:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即乙>甲>丙.故選:A4.(2022·全國·高三專題練習(xí)(文))已知SKIPIF1<0,則“對任意SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】A因為對任意SKIPIF1<0,有SKIPIF1<0,而對任意SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0是SKIPIF1<0的真子集,所以“對任意SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,故選:A5.(2022·河南·模擬預(yù)測(理))一家商店使用一架兩臂不等長的天平稱黃金.一位顧客到店里購買10SKIPIF1<0黃金,售貨員先將5SKIPIF1<0的砝碼放在天平左盤中,取出一些黃金放在天平右盤中使天平平衡;再將5SKIPIF1<0的砝碼放在天平右盤中,再取出一些黃金放在天平左盤中使天平平衡;最后將兩次稱得的黃金交給顧客.若顧客實際購得的黃金為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.以上都有可能【答案】A由于天平兩臂不等長,可設(shè)天平左臂長為SKIPIF1<0,右臂長為SKIPIF1<0,則SKIPIF1<0,再設(shè)先稱得黃金為SKIPIF1<0,后稱得黃金為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,但SKIPIF1<0,等號不成立,即SKIPIF1<0.因此,顧客購得的黃金SKIPIF1<0.故選:A.6.(2022·全國·高一)如圖所示,將一矩形花壇SKIPIF1<0擴建為一個更大的矩形花壇SKIPIF1<0,要求點SKIPIF1<0在SKIPIF1<0上,點SKIPIF1<0在SKIPIF1<0上,且對角線SKIPIF1<0過點SKIPIF1<0,已知SKIPIF1<0米,SKIPIF1<0米,當(dāng)SKIPIF1<0=_______時,矩形花壇SKIPIF1<0的面積最小.【答案】4設(shè)SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,∴矩形SKIPIF1<0的面積為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立.故答案為:4.高頻考點四:基本不等式等號不成立,優(yōu)先對鉤函數(shù)1.(2022·重慶南開中學(xué)模擬預(yù)測)已知命題SKIPIF1<0:“SKIPIF1<0”為真命題,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B命題p:“SKIPIF1<0,SKIPIF1<0”,即SKIPIF1<0,設(shè)SKIPIF1<0,對勾函數(shù)在SKIPIF1<0時取得最小值為4,在SKIPIF1<0時取得最大值為SKIPIF1<0,故SKIPIF1<0,故選:B.2.(2022·浙江·高三專題練習(xí))若不等式SKIPIF1<0對一切SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C若不等式SKIPIF1<0對一切SKIPIF1<0恒成立,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0.故選:C3.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的最小值為(
)A.2 B.SKIPIF1<0 C.1 D.不存在【答案】B令SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0在SKIPIF1<0上也是增函數(shù).SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0.故選:B.4.(2022·新疆·石河子第二中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:SKIPIF1<0,使得SKIPIF1<0,等價于SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由對勾函數(shù)的單調(diào)性知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.5.(2022·全國·高二課時練習(xí))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上(
)A.有最大值為SKIPIF1<0,最小值為0 B.有最大值為SKIPIF1<0,最小值為0C.有最大值為SKIPIF1<0,無最小值 D.有最大值為SKIPIF1<0,無最小值【答案】A當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,雙勾函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,綜上所述:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故選:A.第五部分:高考真題感悟第五部分:高考真題感悟1.(2021·江蘇·高考真題)已知奇函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的單調(diào)函數(shù),若正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4【答案】B解:因為SKIPIF1<0,所以SKIPIF1<0,因為奇函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的單調(diào)函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以SKIPIF1<0的最小值是SKIPIF1<0.故選:B2.(2021·全國·高考真題(文))下列函數(shù)中最小值為4的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C對于A,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,所以其最小值為SKIPIF1<0,A不符合題意;對于B,因為SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,等號取不到,所以其最小值不為SKIPIF1<0,B不符合題意;對于C,因為函數(shù)定義域為SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以其最小值為SKIPIF1<0,C符合題意;對于D,SKIPIF1<0,函數(shù)定義域為SKIPIF1<0,而SKIPIF1<0且SKIPIF1<0,如當(dāng)SKIPIF1<0,SKIPIF1<0,D不符合題意.故選:C.3.(2021·天津·高考真題)若SKIPIF1<0,則SKIPIF1<0的最小值為____________.【答案】SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.4.(2021·江蘇·高考真題)某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本SKIPIF1<0萬元與年產(chǎn)量SKIPIF1<0噸之間的函數(shù)關(guān)系可以近似地表示為SKIPIF1<0,已知此生產(chǎn)線的年產(chǎn)量最小為60噸,最大為110噸.(1)年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低?并求最低平均成本;(2)若每噸產(chǎn)品的平均出廠價為24萬元,且產(chǎn)品能全部售出,則年產(chǎn)量為多少噸時,可以獲得最大利潤?并求最大利潤.【答案】(1)年產(chǎn)量為100噸時,平均成本最低為16萬元;(2)年產(chǎn)量為110噸時,最大利潤為860萬元.(1)SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0取“=”,符合題意;∴年產(chǎn)量為100噸時,平均成本最低為16萬元.(2)SKIPIF1<0又SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0.答:年產(chǎn)量為110噸時,最大利潤為860萬元.第六部分:第六部分:第03講基本不等式(精練)一、單選題1.(2022·江西·贛州市贛縣第三中學(xué)高一開學(xué)考試)下列說法正確的為(
)A.SKIPIF1<0B.函數(shù)SKIPIF1<0的最小值為4C.若SKIPIF1<0則SKIPIF1<0最大值為1D.已知SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0取得最小值8【答案】C對于選項SKIPIF1<0,只有當(dāng)SKIPIF1<0時,才滿足基本不等式的使用條件,則SKIPIF1<0不正確;對于選項SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則最小值為SKIPIF1<0,則SKIPIF1<0不正確;對于選項SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0正確;對于選項SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0,等號成立,則SKIPIF1<0不正確.故選:SKIPIF1<0.2.(2022·福建·莆田一中高一期末)函數(shù)SKIPIF1<0有(
)A.最大值SKIPIF1<0 B.最小值SKIPIF1<0 C.最大值2 D.最小值2【答案】D(方法1)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立.(方法2)令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.將其代入,原函數(shù)可化為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,此時SKIPIF1<0.故選:D3.(2022·河南·郟縣第一高級中學(xué)高二開學(xué)考試(理))正實數(shù)ab滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.16 B.24 C.32 D.40【答案】C正實數(shù)ab滿足SKIPIF1<0,所以SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時取等號,SKIPIF1<0化簡得SKIPIF1<0,所以SKIPIF1<0故選:C.4.(2022·江西撫州·高二期末(文))若命題“對任意SKIPIF1<0,使得SKIPIF1<0成立”是真命題,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:由題得SKIPIF1<0對任意SKIPIF1<0恒成立,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時等號成立)所以SKIPIF1<0.故選:A5.(2022·河南·駐馬店市基礎(chǔ)教學(xué)研究室高二期末(理))中國大運河項目成功人選世界文化遺產(chǎn)名錄,成為中國第46個世界遺產(chǎn)項目,隨著對大運河的保護(hù)與開發(fā),大運河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團乘游船從奧體公園碼頭出發(fā)順流而下至漕運碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹镾KIPIF1<0,在逆水中的速度為SKIPIF1<0,則游船此次行程的平均速度V與SKIPIF1<0的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A易知SKIPIF1<0,設(shè)奧運公園碼頭到漕運碼頭之間的距離為1,則游船順流而下的時間為SKIPIF1<0,逆流而上的時間為SKIPIF1<0,則平均速度SKIPIF1<0,由基本不等式可得SKIPIF1<0,而SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,兩個不等式都取得“=”,而根據(jù)題意SKIPIF1<0,于是SKIPIF1<0.故選:A.6.(2022·浙江溫州·二模)已知正數(shù)a,b和實數(shù)t滿足SKIPIF1<0,若SKIPIF1<0存在最大值,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的最大值為1,符合題意;②當(dāng)SKIPIF1<0,即SKIPIF1<0時,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,此時SKIPIF1<0有最小值,無最大值,與題意矛盾;③當(dāng)SKIPIF1<0,即SKIPIF1<0時,則SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,此時SKIPIF1<0無最大值,與題意矛盾;當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,此時SKIPIF1<0有最大值,符合題意;當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0恒不成立,不符題意,綜上所述,若SKIPIF1<0存在最大值,SKIPIF1<0.故選:C.7.(2022·廣東·高三階段練習(xí))在足球比賽中,球員在對方球門前的不同的位置起腳射門對球門的威脅是不同的,出球點對球門的張角越大,射門的命中率就越高.如圖為室內(nèi)5人制足球場示意圖,設(shè)球場(矩形)長SKIPIF1<0大約為40米,寬SKIPIF1<0大約為20米,球門長SKIPIF1<0大約為4米.在某場比賽中有一位球員欲在邊線SKIPIF1<0上某點SKIPIF1<0處射門(假設(shè)球貼地直線運行),為使得張角SKIPIF1<0最大,則SKIPIF1<0大約為(
)(精確到1米)A.8米 B.9米 C.10米 D.11米【答案】C由題意知,SKIPIF1<0,設(shè)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45147-2024道路車輛總質(zhì)量大于3.5 t的車輛氣制動系統(tǒng)試驗使用滾筒制動試驗臺獲取和使用參考值
- 教科版八年級物理上冊《2.3物體運動的速度》同步測試題及答案
- 新人教版八年級數(shù)學(xué)上冊導(dǎo)學(xué)案
- 安全生產(chǎn)目標(biāo)責(zé)任書考核記錄
- 2024.11.15推文-Mouse IL-4、IFN-γ誘導(dǎo)巨噬細(xì)胞M1M2極化文獻(xiàn)解讀
- 2024高中地理第六章人類與地理環(huán)境的協(xié)調(diào)發(fā)展第2節(jié)中國的可持續(xù)發(fā)展實踐練習(xí)含解析新人教版必修2
- 2024高中生物第2章動物和人體生命活動的調(diào)節(jié)第1節(jié)通過神經(jīng)系統(tǒng)調(diào)節(jié)課堂演練含解析新人教版必修3
- 2024高中語文第三課神奇的漢字第2節(jié)規(guī)矩方圓-漢字的簡化和規(guī)范訓(xùn)練含解析新人教版選修語言文字應(yīng)用
- 2024高考地理一輪復(fù)習(xí)第八章第2講世界主要農(nóng)業(yè)地域類型教案含解析新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第4章非金屬及其化合物專題講座二常見氣體的實驗室制備凈化和收集精練含解析
- 2024年山東省生態(tài)環(huán)境監(jiān)測專業(yè)技術(shù)人員大比武理論試題庫(含答案)
- JTJ073.1-2001 公路水泥混凝土路面 養(yǎng)護(hù)技術(shù)規(guī)范
- 2024年互聯(lián)網(wǎng)公司勞動合同樣本(二篇)
- 醫(yī)療器械售后服務(wù)能力證明資料模板
- 中考物理總復(fù)習(xí)《力學(xué)的綜合計算》專項檢測卷(帶答案)
- AQ 1029-2019 煤礦安全監(jiān)控系統(tǒng)及檢測儀器使用管理規(guī)范
- 未成年旅游免責(zé)協(xié)議書
- 預(yù)防保健科主任競聘課件
- 團隊成員介紹
- 水泵行業(yè)銷售人員工作匯報
- 《流感科普宣教》課件
評論
0/150
提交評論