2024屆鐵嶺市重點中學(xué)中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
2024屆鐵嶺市重點中學(xué)中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
2024屆鐵嶺市重點中學(xué)中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
2024屆鐵嶺市重點中學(xué)中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
2024屆鐵嶺市重點中學(xué)中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆鐵嶺市重點中學(xué)中考數(shù)學(xué)對點突破模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小2.我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結(jié),滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是()A.84 B.336 C.510 D.13263.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.4.如表記錄了甲、乙、丙、丁四名跳高運動員最近幾次選拔賽成績的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)185180185180方差3.63.67.48.1根據(jù)表數(shù)據(jù),從中選擇一名成績好且發(fā)揮穩(wěn)定的參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁5.如圖,有一些點組成形如四邊形的圖案,每條“邊”(包括頂點)有n(n>1)個點.當(dāng)n=2018時,這個圖形總的點數(shù)S為()A.8064 B.8067 C.8068 D.80726.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.7.如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關(guān)系的是()A. B.C. D.8.如圖,將△OAB繞O點逆時針旋轉(zhuǎn)60°得到△OCD,若OA=4,∠AOB=35°,則下列結(jié)論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=49.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學(xué)記數(shù)法表示為()A. B. C. D.10.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等11.《九章算術(shù)》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數(shù)若其意義相反,則分別叫做正數(shù)與負數(shù),若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃12.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達A地時,甲車已在C地休息了_____小時.14.分解因式a3﹣6a2+9a=_________________.15.如圖,在△ABC中,DE∥BC,若AD=1,DB=2,則的值為_________.16.與是位似圖形,且對應(yīng)面積比為4:9,則與的位似比為______.17.分解因式:8a3﹣8a2+2a=_____.18.如圖,半徑為5的半圓的初始狀態(tài)是直徑平行于桌面上的直線b,然后把半圓沿直線b進行無滑動滾動,使半圓的直徑與直線b重合為止,則圓心O運動路徑的長度等于_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當(dāng)PD∥AB時,求BP的長.20.(6分)解不等式組:21.(6分)如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.22.(8分)在等邊△ABC外側(cè)作直線AM,點C關(guān)于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數(shù);(2)如圖2,當(dāng)∠MAC=30°時,判斷線段BE與DE之間的數(shù)量關(guān)系,并加以證明;(3)若0°<∠MAC<120°,當(dāng)線段DE=2BE時,直接寫出∠MAC的度數(shù).23.(8分)如圖,在一條河的北岸有兩個目標(biāo)M、N,現(xiàn)在位于它的對岸設(shè)定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結(jié)果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)24.(10分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.25.(10分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.26.(12分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.27.(12分)如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當(dāng)∠DAE=時,四邊形ADFP是菱形;②當(dāng)∠DAE=時,四邊形BFDP是正方形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.2、C【解析】由題意滿七進一,可得該圖示為七進制數(shù),化為十進制數(shù)為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數(shù)的方法,注意運用七進制轉(zhuǎn)化為十進制,考查運算能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.4、A【解析】

首先比較平均數(shù),平均數(shù)相同時選擇方差較小的運動員參加.【詳解】∵=>=,∴從甲和丙中選擇一人參加比賽,∵=<<,∴選擇甲參賽,故選A.【點睛】此題主要考查了平均數(shù)和方差的應(yīng)用,解題關(guān)鍵是明確平均數(shù)越高,成績越高,方差越小,成績越穩(wěn)定.5、C【解析】分析:本題重點注意各個頂點同時在兩條邊上,計算點的個數(shù)時,不要把頂點重復(fù)計算了.詳解:此題中要計算點的個數(shù),可以類似周長的計算方法進行,但應(yīng)注意各個頂點重復(fù)了一次.如當(dāng)n=2時,共有S2=4×2﹣4=4;當(dāng)n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當(dāng)n=2018時,S2018=4×2018﹣4=1.故選C.點睛:本題考查了圖形的變化類問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.6、D【解析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關(guān)鍵.7、D【解析】

在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分當(dāng)0<x≤3(點Q在AC上運動,點P在AB上運動)和當(dāng)3≤x≤6時(點P與點B重合,點Q在CB上運動)兩種情況求出y與x的函數(shù)關(guān)系式,再結(jié)合圖象即可解答.【詳解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,當(dāng)0<x≤3時,點Q在AC上運動,點P在AB上運動(如圖1),由題意可得AP=x,AQ=x,過點Q作QN⊥AB于點N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即當(dāng)0<x≤3時,y隨x的變化關(guān)系是二次函數(shù)關(guān)系,且當(dāng)x=3時,y=4.5;當(dāng)3≤x≤6時,點P與點B重合,點Q在CB上運動(如圖2),由題意可得PQ=6-x,AP=3,過點Q作QN⊥BC于點N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即當(dāng)3≤x≤6時,y隨x的變化關(guān)系是一次函數(shù),且當(dāng)x=6時,y=0.由此可得,只有選項D符合要求,故選D.【點睛】本題考查了動點函數(shù)圖象,解決本題要正確分析動線運動過程,然后再正確計算其對應(yīng)的函數(shù)解析式,由函數(shù)的解析式對應(yīng)其圖象,由此即可解答.8、D【解析】

由△OAB繞O點逆時針旋轉(zhuǎn)60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據(jù)此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉(zhuǎn)60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等及等邊三角形的判定和性質(zhì).9、D【解析】

科學(xué)記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6

590

000=6.59×1.故選:D.【點睛】本題考查學(xué)生對科學(xué)記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.10、D【解析】

分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計算方法.11、B【解析】試題分析:由題意知,“-”代表零下,因此-3℃表示氣溫為零下3℃.故選B.考點:負數(shù)的意義12、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設(shè)OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關(guān)鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎(chǔ).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.1.【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當(dāng)乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、a(a﹣3)1.【解析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案為a(a﹣3)1.15、【解析】DE∥BC即16、2:1【解析】

由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應(yīng)面積比為4:9,與的相似比為2:1,故答案為:2:1.【點睛】本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,其對應(yīng)的面積比等于相似比的平方.17、2a(2a﹣1)2【解析】

提取2a,再將剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【詳解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【點睛】本題考查了因式分解,仔細觀察題目并提取公因式是解決本題的關(guān)鍵.18、5π【解析】

根據(jù)題意得出球在無滑動旋轉(zhuǎn)中通過的路程為圓弧,根據(jù)弧長公式求出弧長即可.【詳解】解:由圖形可知,圓心先向前走OO1的長度,從O到O1的運動軌跡是一條直線,長度為圓的周長,然后沿著弧O1O2旋轉(zhuǎn)圓的周長,則圓心O運動路徑的長度為:×2π×5=5π,故答案為5π.【點睛】本題考查的是弧長的計算和旋轉(zhuǎn)的知識,解題關(guān)鍵是確定半圓作無滑動翻轉(zhuǎn)所經(jīng)過的路線并求出長度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運用相似三角形的性質(zhì)即可求出BP的長.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點睛”本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形外角的性質(zhì)等知識,把證明AC?CD=CP?BP轉(zhuǎn)化為證明AB?CD=CP?BP是解決第(1)小題的關(guān)鍵,證到∠BAP=∠C進而得到△BAP∽△BCA是解決第(2)小題的關(guān)鍵.20、﹣9<x<1.【解析】

先求每一個不等式的解集,然后找出它們的公共部分,即可得出答案.【詳解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,則原不等式組的解集為﹣9<x<1.【點睛】此題考查了解一元一次不等式組,用到的知識點是解一元一次不等式組的步驟,關(guān)鍵是找出兩個不等式解集的公共部分.21、(1)證明見解析;(2);(3);【解析】

(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結(jié)論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設(shè)DH=x,則DE=2x,所以然后求出x即可得到DE的長.【詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設(shè)DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【點睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.22、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】

(1)根據(jù)軸對稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內(nèi)角和得出x+y即可得出結(jié)論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結(jié)論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結(jié)論.【詳解】(1)補全圖形如圖1所示,根據(jù)軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質(zhì),軸對稱的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,作出圖形是解本題的關(guān)鍵.23、(1);(2)95m.【解析】

(1)過點M作MD⊥AB于點D,易求AD的長,再由BD=MD可得BD的長,即M到AB的距離;

(2)過點N作NE⊥AB于點E,易證四邊形MDEN為平行四邊形,所以ME的長可求出,再根據(jù)MN=AB-AD-BE計算即可.【詳解】解:(1)過點M作MD⊥AB于點D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴BD=MD=,∵AB=600m,∴AD+BD=600m,∴AD+,∴AD=(300)m,∴BD=MD=(900-300),∴點M到AB的距離(900-300).(2)過點N作NE⊥AB于點E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四邊形MDEN為平行四邊形,∴NE=MD=(900-300),MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴BEm,∴MN=AB-AD-BE.【點睛】考查了解直角三角形的應(yīng)用,通過解直角三角形能解決實際問題中的很多有關(guān)測量問題,根據(jù)題目已知特點選用適當(dāng)銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學(xué)問題的答案,再轉(zhuǎn)化得到實際問題的答案是解題的關(guān)鍵.24、(1)證明見解析;(2).【解析】

(1)由切線的性質(zhì)可知∠DAB=90°,由直角所對的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質(zhì)可知∠B=∠OCB,由對頂角的性質(zhì)可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE?AD,故此可求得DE=,于是可求得AE=.【詳解】解:(1)∵AD是圓O的切線,∴∠DAB=90°.∵AB是圓O的直徑,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.25、2.【解析】

根據(jù)勾股定理逆定理,證△ABD是直角三角形,得AD⊥BC,可證AD垂直平分BC,所以AB=AC.【詳解】解:∵AD是△ABC的中線,且BC=10,∴BD=BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論