版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年河北省衡水市景縣中考數(shù)學(xué)全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當(dāng)∠DAF=15°時,△AEF為等邊三角形;④當(dāng)∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④2.如圖,數(shù)軸上的A、B、C、D四點中,與數(shù)﹣表示的點最接近的是()A.點A B.點B C.點C D.點D3.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當(dāng)小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當(dāng)小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標(biāo)是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)4.若關(guān)于x、y的方程組有實數(shù)解,則實數(shù)k的取值范圍是()A.k>4 B.k<4 C.k≤4 D.k≥45.已知電流I(安培)、電壓U(伏特)、電阻R(歐姆)之間的關(guān)系為,當(dāng)電壓為定值時,I關(guān)于R的函數(shù)圖象是()A. B. C. D.6.我國古代數(shù)學(xué)著作《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何?!贝笾乱馑际牵骸坝靡桓K子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設(shè)繩子長尺,木條長尺,根據(jù)題意所列方程組正確的是()A. B. C. D.7.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.8.如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.69.把8a3﹣8a2+2a進(jìn)行因式分解,結(jié)果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)210.二次函數(shù)y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結(jié)論:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個11.某校九年級(1)班全體學(xué)生實驗考試的成績統(tǒng)計如下表:成績(分)24252627282930人數(shù)(人)2566876根據(jù)上表中的信息判斷,下列結(jié)論中錯誤的是()A.該班一共有40名同學(xué)B.該班考試成績的眾數(shù)是28分C.該班考試成績的中位數(shù)是28分D.該班考試成績的平均數(shù)是28分12.下列四個函數(shù)圖象中,當(dāng)x<0時,函數(shù)值y隨自變量x的增大而減小的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.觀光塔是濰坊市區(qū)的標(biāo)志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.14.用科學(xué)計數(shù)器計算:2×sin15°×cos15°=_______(結(jié)果精確到0.01).15.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.16.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.17.如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1,P2,P3,P4,…,它們的橫坐標(biāo)依次為2,4,6,8,…分別過這些點作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn=_____(用含n的代數(shù)式表示)18.已知A(0,3),B(2,3)是拋物線上兩點,該拋物線的頂點坐標(biāo)是_________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如表:x/元…152025…y/件…252015…已知日銷售量y是銷售價x的一次函數(shù).求日銷售量y(件)與每件產(chǎn)品的銷售價x(元)之間的函數(shù)表達(dá)式;當(dāng)每件產(chǎn)品的銷售價定為35元時,此時每日的銷售利潤是多少元?20.(6分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.21.(6分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標(biāo);(2)若直線EF的解析式為y=3(3)若雙曲線y=k22.(8分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點O逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標(biāo).23.(8分)如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數(shù).24.(10分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.25.(10分)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校36個班中隨機(jī)抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)相關(guān)信息,回答下列問題:(1)請你將條形統(tǒng)計圖補(bǔ)充完整;并估計全校共征集了_____件作品;(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學(xué)生恰好是一男一女的概率.26.(12分)今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學(xué)生對霧霾天氣知識的了解程度,某校在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表:對霧霾的了解程度
百分比
A.非常了解
5%
B.比較了解
m
C.基本了解
45%
D.不了解
n
請結(jié)合統(tǒng)計圖表,回答下列問題.(1)本次參與調(diào)查的學(xué)生共有人,m=,n=;(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應(yīng)的圓心角是度;(3)請補(bǔ)全條形統(tǒng)計圖;(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開展關(guān)于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設(shè)計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機(jī)摸出一個球,另一人再從剩下的三個球中隨機(jī)摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ堄脴錉顖D或列表法說明這個游戲規(guī)則是否公平.27.(12分)灞橋區(qū)教育局為了了解七年級學(xué)生參加社會實踐活動情況,隨機(jī)抽取了鐵一中濱河學(xué)部分七年級學(xué)生2016﹣2017學(xué)年第一學(xué)期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:a=%,并補(bǔ)全條形圖.在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?如果該區(qū)共有七年級學(xué)生約9000人,請你估計活動時間不少于6天的學(xué)生人數(shù)大約有多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設(shè)BC=a,CE=y,由勾股定理就可以得出EF與x、y的關(guān)系,表示出BE與EF,即可判斷BE+DF與EF關(guān)系不確定;③當(dāng)∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當(dāng)∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結(jié)論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設(shè)BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關(guān)系不確定,只有當(dāng)y=(2?)a時成立,(故②錯誤).③當(dāng)∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當(dāng)∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關(guān)鍵.2、B【解析】
,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.3、D【解析】
先根據(jù)反射角等于入射角先找出前幾個點,直至出現(xiàn)規(guī)律,然后再根據(jù)規(guī)律進(jìn)行求解.【詳解】由分析可得p(0,1)、、、、、、等,故該坐標(biāo)的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標(biāo)為(4,1).【點睛】本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關(guān)鍵.4、C【解析】
利用根與系數(shù)的關(guān)系可以構(gòu)造一個兩根分別是x,y的一元二次方程,方程有實數(shù)根,用根的判別式≥0來確定k的取值范圍.【詳解】解:∵xy=k,x+y=4,∴根據(jù)根與系數(shù)的關(guān)系可以構(gòu)造一個關(guān)于m的新方程,設(shè)x,y為方程的實數(shù)根.解不等式得故選:C.【點睛】本題考查了一元二次方程的根的判別式的應(yīng)用和根與系數(shù)的關(guān)系.解題的關(guān)鍵是了解方程組有實數(shù)根的意義.5、C【解析】
根據(jù)反比例函數(shù)的圖像性質(zhì)進(jìn)行判斷.【詳解】解:∵,電壓為定值,∴I關(guān)于R的函數(shù)是反比例函數(shù),且圖象在第一象限,故選C.【點睛】本題考查反比例函數(shù)的圖像,掌握圖像性質(zhì)是解題關(guān)鍵.6、A【解析】
本題的等量關(guān)系是:繩長-木長=4.5;木長-×繩長=1,據(jù)此列方程組即可求解.【詳解】設(shè)繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關(guān)鍵是明確題意,列出相應(yīng)的二元一次方程組.7、C【解析】
先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).8、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設(shè)切點為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點:圓的切線的性質(zhì);勾股定理.9、C【解析】
首先提取公因式2a,進(jìn)而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點睛】本題因式分解中提公因式法與公式法的綜合運用.10、B【解析】根據(jù)題意和函數(shù)的圖像,可知拋物線的對稱軸為直線x=-=1,即b=-4a,變形為4a+b=0,所以(1)正確;由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正確;因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函數(shù)的圖像開口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正確;根據(jù)圖像可知當(dāng)x<1時,y隨x增大而增大,當(dāng)x>1時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1=y3<y1,故(4)不正確;根據(jù)函數(shù)的對稱性可知函數(shù)與x軸的另一交點坐標(biāo)為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<x1,故(5)正確.正確的共有3個.故選B.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax1+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.
拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b1﹣4ac>0時,拋物線與x軸有1個交點;△=b1﹣4ac=0時,拋物線與x軸有1個交點;△=b1﹣4ac<0時,拋物線與x軸沒有交點.11、D【解析】
直接利用眾數(shù)、中位數(shù)、平均數(shù)的求法分別分析得出答案.【詳解】解:A、該班一共有2+5+6+6+8+7+6=40名同學(xué),故此選項正確,不合題意;B、該班考試成績的眾數(shù)是28分,此選項正確,不合題意;C、該班考試成績的中位數(shù)是:第20和21個數(shù)據(jù)的平均數(shù),為28分,此選項正確,不合題意;D、該班考試成績的平均數(shù)是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故選項D錯誤,符合題意.故選D.【點睛】此題主要考查了眾數(shù)、中位數(shù)、平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.12、D【解析】
A、根據(jù)函數(shù)的圖象可知y隨x的增大而增大,故本選項錯誤;B、根據(jù)函數(shù)的圖象可知在第二象限內(nèi)y隨x的增大而減增大,故本選項錯誤;C、根據(jù)函數(shù)的圖象可知,當(dāng)x<0時,在對稱軸的右側(cè)y隨x的增大而減小,在對稱軸的左側(cè)y隨x的增大而增大,故本選項錯誤;D、根據(jù)函數(shù)的圖象可知,當(dāng)x<0時,y隨x的增大而減??;故本選項正確.故選D.【點睛】本題考查了函數(shù)的圖象,函數(shù)的增減性,熟練掌握各函數(shù)的性質(zhì)是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應(yīng)用.14、0.50【解析】
直接使用科學(xué)計算器計算即可,結(jié)果需保留二位有效數(shù)字.【詳解】用科學(xué)計算器計算得0.5,故填0.50,【點睛】此題主要考查科學(xué)計算器的使用,注意結(jié)果保留二位有效數(shù)字.15、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.16、1【解析】
利用△ACD∽△CBD,對應(yīng)線段成比例就可以求出.【詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【點睛】本題考查了相似三角形的性質(zhì)和判定,熟練掌握相似三角形的判定方法是關(guān)鍵.17、10﹣【解析】
過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn+1于點D,所有的陰影部分平移到左邊,陰影部分的面積之和就等于矩形P1ABD的面積,即可得到答案.【詳解】如圖,過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn于點D,則點Pn+1的坐標(biāo)為(2n+2,),則OB=,∵點P1的橫坐標(biāo)為2,∴點P1的縱坐標(biāo)為5,∴AB=5﹣,∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,故答案為10﹣.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是掌握過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|.18、(1,4).【解析】試題分析:把A(0,3),B(2,3)代入拋物線可得b=2,c=3,所以=,即可得該拋物線的頂點坐標(biāo)是(1,4).考點:拋物線的頂點.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、();()此時每天利潤為元.【解析】試題分析:(1)根據(jù)題意用待定系數(shù)法即可得解;(2)把x=35代入(1)中的解析式,得到銷量,然后再乘以每件的利潤即可得.試題解析:()設(shè),將,和,代入,得:,解得:,∴;()將代入()中函數(shù)表達(dá)式得:,∴利潤(元),答:此時每天利潤為元.20、(1)∠A=30°;(2)【解析】
(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結(jié)OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質(zhì),解題的關(guān)鍵是熟練的掌握扇形面積的計算及切線的性質(zhì).21、(1)E(-3,4)、F(-5,0);(2)-334【解析】
(1)連接OE,BF,根據(jù)題意可知:BC=OA=8,BA=OC=4,設(shè)EC=x,則BE=OE=8-x,根據(jù)勾股定理可得:OC2+CE2(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則3x+3=0,解得x=-3,根據(jù)菱形的性質(zhì)得OF=OE=BE=BF=3令y=n,則3x+3=n,解得x=n-33(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,根據(jù)勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出點E(m2-n22m?,?n)、F(即可求出tan∠EFO=-m【詳解】解:(1)如圖:連接OE,BF,E(-3,4)、F(-5,0)(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE可證:△BGE≌△OGF(ASA)∴BE=OF∴四邊形OEBF為菱形令y=0,則3x+3=0,解得x=-3令y=n,則3x+3=n,解得x=n-3在Rt△COE中,(-n-3解得n=3∴E(-3∴k=-(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得x=-∴E(m2-n∴EF的中點為(m2將E(m2-n22mn(m2-n∴tan∠EFO=-【點睛】考查矩形的折疊與性質(zhì),勾股定理,一次函數(shù)的圖象與性質(zhì),待定系數(shù)法求反比例函數(shù)解析式,銳角三角函數(shù)等,綜合性比較強(qiáng),難度較大.22、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標(biāo)為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進(jìn)而求得直線AD的解析式,設(shè)則表示出,用配方法求出它的最大值,聯(lián)立方程求出點的坐標(biāo),最大值=,進(jìn)而計算四邊形EAPD面積的最大值;分兩種情況進(jìn)行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過點P作軸交AD于點G,∵∴直線BE的解析式為∵AD∥BE,設(shè)直線AD的解析式為代入,可得∴直線AD的解析式為設(shè)則則∴當(dāng)x=1時,PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當(dāng)時,作于T.∵∴∴∴可得②如圖3﹣2中,當(dāng)時,當(dāng)時,當(dāng)時,Q3綜上所述,滿足條件點點Q坐標(biāo)為或或或23、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.24、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點C,AD與過點C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因為tan∠ABC=,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識點有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).25、(1)圖形見解析,216件;(2)【解析】
(1)由B班級的作品數(shù)量及其占總數(shù)量的比例可得4個班作品總數(shù),再求得D班級的數(shù)量,可補(bǔ)全條形圖,再用36乘四個班的平均數(shù)即估計全校的作品數(shù);
(2)列表得出所有等可能結(jié)果,從中找到一男、一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】(1)4個班作品總數(shù)為:件,所以D班級作品數(shù)量為:36-6-12-10=8;∴估計全校共征集作品×36=324件.
條形圖如圖所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 焦作新材料職業(yè)學(xué)院《GNSS測量原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北理工學(xué)院《精準(zhǔn)協(xié)作》2023-2024學(xué)年第一學(xué)期期末試卷
- 河源職業(yè)技術(shù)學(xué)院《多聲部音樂基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江藝術(shù)職業(yè)學(xué)院《建筑設(shè)計基礎(chǔ)A1》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工商職業(yè)技術(shù)學(xué)院《工程預(yù)算課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 中山火炬職業(yè)技術(shù)學(xué)院《電子工藝技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州職業(yè)技術(shù)學(xué)院《功能性食品概況》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)黨員活動量化積分制度
- 長沙衛(wèi)生職業(yè)學(xué)院《民族民間音樂》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《現(xiàn)代生物技術(shù)綜合實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 校園熱水方案
- 跟蹤服務(wù)項目活動實施方案
- 新能源汽車產(chǎn)業(yè)鏈中的區(qū)域發(fā)展不均衡分析與對策
- 財務(wù)機(jī)器人技術(shù)在會計工作中的應(yīng)用
- 《保單檢視專題》課件
- 建筑保溫隔熱構(gòu)造
- 智慧財務(wù)綜合實訓(xùn)
- 安徽省合肥市2021-2022學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)3
- 教育專家報告合集:年度得到:沈祖蕓全球教育報告(2023-2024)
- 肝臟腫瘤護(hù)理查房
- 護(hù)士工作壓力管理護(hù)理工作中的壓力應(yīng)對策略
評論
0/150
提交評論