版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE
PAGE
PAGE
1
PAGE
1
AerodynamicPerformancesofPropellerswithParametricConsiderationsontheOptimalDesign
S.D’Angelo,F.Berardi,E.Minisci
DepartmentofAeronauticalandSpaceEngineering
PolitecnicodiTorino,Turin-Italy
ABSTRACT
Inthispapertwonumericalproceduresarepresented:thefirstalgorithmallowsforthedeterminationofthegeometriccharacteristicsofthemaximumefficiencypropellerforagivenoperativeconditionandprofiledistributionalongtheblade;theoutputofthisnumericalprocedureisthechorddistributionandtwistangleoftheblade,togetherwithitsefficiencyanditstorqueandthrustcoefficientsfortheprescribedoperativecondition.Theaerodynamiccharacteristicsoftheoptimumpropellerwhenoperatinginaconditiondifferentfromthedesignoneareobtainedbyasecondalgorithmthatallowsfortheevaluationoftheefficiency,thethrustandtorquecoefficientsofapropellerofknowngeometry,whenthebladepitchandoperativeconditionarevaried.
Inthepapertheformulationusedforderivingthegeometryoftheoptimumpropelleranddeterminingitsperformanceswhenoperatingoff-designisdescribedindetail.Theresultsobtainedfromtheproposedpropellermodelhavebeenvalidatedbycomparisonwithexperimentaldata.
Nomenclature
b
nondimensionalbladesectionchord,b=l/R
c
soundspeed
cd
airfoildragcoefficient
cl
airfoilliftcoefficient
D
drag
E
aerodynamicefficiency
FA
totalaerodynamicforce
kP
Prandtlcorrectionfactor
K
Lagrangefactor(constant)
l
bladesectionchord
L
lift
M
enginetorque
Ma
freestreamMachnumber,Ma=V/c
Ma
localMachnumberatstation,Ma=VE/c
n
bladenumber
P
shaftpower
r
coordinatealongbladespan
R
propellerradius
Re
freestreamReynoldsnumber,Re=R*V*/
Re
localReynoldsnumberatstation,Re=l*VE*/
T
thrust
uD
inducedvelocityintheplaneofthepropeller
V
forwardspeed
VA
apparentvelocity,VA=(V2+(r)2)1/2
VE
actualvelocityofflowapproachingtheairfoil
nondimensionalactualvelocity,=VE/V
actualairfoilangleofattack
A
apparentairfoilangleofattack
Emax
angleofattackformaximumairfoilefficiency
i
inducedincidence
tw
twistangle
advanceratio
circulation
anglebetweenactualvelocityandpropellerplane
A
anglebetweenapparentvelocityandpropellerplane
efficiency
bladesectionpitchanglerelativetopropellerplane,()=tw()+0
0
collectivepitch,0=(=0.75)
airviscosity
nondimensionalcoordinatealongtheblade
airdensity
thrustcoefficient
torquecoefficient
angularcomponentofinducedvelocityinthepropellerplane
propellerangularvelocity
INTRODUCTION
Thenumericalprocedureproposedinthepresentpaperrequirestheaprioriknowledgeoftheaerodynamiccharacteristicsoftheairfoilsusedforthepropeller.Thiscanbeobtainedfromanexperimentalorcomputationaldata-base.
Itisnotalwayspossibletoobtaindetaileddata-basesthattakeintoconsiderationbothReynoldsandMachnumbereffectsinsuchawiderangeasthatencounteredatdifferentsectionsofanaeronauticalpropellerblade.LinearinterpolationandextrapolationbetweenexperimentaldataisusedinordertotakeintoconsiderationReynoldsnumbervariation,whilesemiempiricalcorrectionsareimplementedfortakingintoconsiderationcompressibilityeffects.
Thepropellerperformancedeterminedbyasimplifiednumericalprocedurecomparewellwiththeexperimentalresultsobtainedfromwind-tunneltests,asfarasthesectionat0.75ofbladespanisoperatingbelowstallangleandbelowdrag-divergenceMachnumberintheconsideredcondition.
Inwhatfollows,theclassicalaerodynamicpropellertheoryisdiscussed.Theformulationisorientedtowardstheimplementationofanumericalalgorithmforthedeterminationofthepropellerofmaximumefficiencyforagivenoperatingcondition.
Afteradetaileddiscussionoftheaerodynamictheoryofpropellers,theexperimentaldatabaseofairfoilcharacteristicsusedintheevaluationoftheoptimumbladeispresentedandacomparisonbetweenexperimentaldataandnumericalresultsforthegivenairfoilisdiscussedforvalidatingtheproposedalgorithm.
Aparametricstudyoftheoptimumbladeshapeatdifferentoperatingpointsispresented,soastoderivesomegeneralconsiderationsonthegeometryofthemaximumefficiencypropeller.Thesegeneralprinciplescanbeusefulindefiningproperinitialsolutionswhenmoresophisticatedoptimizationtoolsareused,withmeritfunctionsdifferentfromtheaerodynamicefficiencyoreveninthecaseofmulti-objectiveoptimization.
Thesameformulationusedfortheoptimizationroutineisimplementedinasecondnumericalalgorithmfortheevaluationoftheaerodynamiccharacteristicsofagivenpropellerinanyoperatingcondition,intermsofbladepitch,,andadvanceratio,.Thevaluesofthrustcoefficient,torquecoefficientandefficiencyareobtained,i.e.(,),(,),and(,).
Thisroutineisvalidatedcomparingitsresultswithavailableexperimentaldata.Theaccuracyofthenumericalpredictionseemstobesatisfactoryfromanengineeringstandpoint.Moreoverthecomputationaleffortrequiredbytheproposedalgorithmisverylimitedandthismakeitsuitableforitsimplementationindifferentoptimizationprocedures,singleobjectiveormulti-objective,deterministicornon-deterministic.
Fromaerodynamicpropellertheorytopropellerdesign.
Inthispaperwewillconsiderpropellergeneratingthrustinanaxialflow.Thebladehasvariablechordandtwistanglebutthefeatheringaxisisassumedrectilinearandlyinginaplaneduringtherevolution.
Theaerodynamictheoryadoptedisbasedonclassicalresults[1],[2],obtainedfromtheintegrationofvortextheory,wingtheoryandmomentumtheory.
Whenvortextheoryisadopted,propellerthrustandtorqueareexpressedasafunctionofcirculationalongtheblade.Thrustdistributionofminimumenergydissipationisobtainedbyavariationalapproach,adoptingPrandtlsimplifiedapproach[3].
Ifwingtheoryischosenforrepresentingtheaerodynamicbehavioroftheblade,thrustandtorqueareobtainedfromintegrationofelementaryliftanddragcontributionactingonaninfinitesimalbladeelement.Theinducedvelocityisevaluatedlocallycombiningresultsfromwingtheoryandmomentumconservationprinciple.
Vortextheory
Figure1representagenericbladeelement.ThemeaningofthesymbolsusedinthefollowingpagescanbefoundintheNomenclatureandisrepresentedinthesamefigure.
Theactualvelocityoftheflowpastagivensection,VE,isgivenbythevectorsumoftheapparentvelocity,VA,andtheinducedvelocityincrementattheconsideredsectionuD.VAisgivenbythesumofforwardspeedVandrotationalspeedofthesectionr.
Whenabladeelementdratpositionralongthebladespanisconsidered,thecirculation(r)canbeexpressedaccordingtoPrandtlapproximationas:
(1)
(2)
Thrust,torque,andpowerdissipatedbythepropellerareobtainedintegratingtheelementarycomponentsalongasinglebladeandmultiplyingtheresultbythenumberofblades.
Onagivenbladeelement,theaerodynamicforcedFA,thrustdT,torquedManddissipatedenergyperseconddPdaregivenrespectivelyby:
(3)
(4)
(5)
(6)
Calculusofvariationsallowsforthedeterminationoftheoptimalcirculationdistribution(r)thatminimizestheenergylossforagiventhrustT.
Letting-KVbetheLagrangefactor,thederivativeofthelinearcombinationofthrustandpowerlossisequatedtozero.Theresultingequationissolvedwithrespecttothecirculation,andtheconditionforminimumpowerlossisobtained:
(7)
Thecirculationdistribution,theactualvelocityandinducedvelocityforthesectionatcoordinaterfromthepropelleraxisarethenexpressedby:
(8)
(9)
(10)
Givenn,T,V,,andR,theLagrangemultipliercanbeobtainedintwodifferentways:
bynumericalsolutionoftheimplicitfunction:
(11)
where
(12)
byasimplifiedformulationobtainedneglectingK2withrespecttothefirstordertermasfarasK1,sothat:
(13)
where
(14)
Wingtheory
Asstatedintheintroduction,thewingtheoryallowsfortheevaluationofthrustandtorquegeneratedbyapropellerinagivenoperatingconditionbyintegratingtheelementaryaerodynamicactionsactingonaninfinitesimalportiondroftheblade.
Inthiscaseelementarythrustandtorqueareexpressedas:
(15)
(16)
Theactualvelocityandtheinducedincidenceareobtainedequatingtheexpressionforthepropellerthrustderivedfromvortextheoryandthatobtainedbywingtheory.Theresultingexpressionsare:
(17)
(18)
Non-dimensionalcoefficientandindependentparameters
Theadvanceratio,thethrustcoefficient,thetorquecoefficient,andthepropellerefficiencyaredefinedasfollows:
(19)
(20)
(21)
(22)
Thrustandtorquecoefficientscanbeexpressedasafunctionof6independentparameters,i.e.:
(23)
(24)
IfweapplythetheoremofBuckingam,weobtainthefollowingrelationsintermsofnon-dimensionalparameters:
(25)
(26)
whereMaistheMachnumberoftheundisturbedflowupstreamthepropeller,whileReistheReynoldsnumber,thereferencelengthbeingthepropellerradiusR.
WewillassumethattheinfluenceofReandMaoneisdueonlytotheireffectontheaerodynamiccoefficientsclecdofeachbladesection,i.e.ontheaerodynamiccharacteristicsofeachairfoil.
Finallywewillintroducealsothefollowingnon-dimensionalquantities:
(27)
(28)
(29)
(30)
(31)
whereisanon-dimensionalcoordinatealongthebladeradius,bisthebladesectionnon-dimensionalchord,isthenon-dimensionalactualvelocitypasttheconsideredbladesection,ReandMaarethelocalReynoldsandMachnumber,respectively.
Aerodynamicdatabase
Theevaluationoftheaerodynamicperformanceofapropellerrequiresthedetailedknowledgeofcharacteristicoftheairfoilusedfortheblades.TheaerodynamicdatabaseshouldprovidethevaluesofairfoildragandliftcoefficientsasafunctionofangleofattackandReynoldsnumber.
Usuallydifferentairfoilsareusedalongtheblade,butaerodynamiccharacteristicsareavailableforonlyfewofthem.Inthiscaseitisassumedthatintermediatesectionsbetweenknownprofilesarecharacterizedbyan“intermediate”aerodynamicbehaviour,i.e.liftanddragcoefficientsareobtainedbyaproperlinearcombinationthatweightstheairfoilcharacteristicsasafunctionoftherelativedistancefromtheprofileswithknowncharacteristics.Ifxisalocalnondimensionalcoordinatebetweentheknownsections,liftanddragcoefficientfornon-compressibleflowwillbeexpressedas:
(32)
(33)
Inordertoobtainsignificantresultsfromtheinterpolation,itisnecessarytoconsidertheeffectsofReynoldsnumberontheaerodynamiccoefficients,asfarasRexexperiencesasignificantvariationwhendifferentsectionsareconsidered.
Compressibilitycorrection
Compressibilityeffectscanhaveasizeableinfluenceonthevaluesofliftanddragcoefficients.
ThelocalMachnumberalonganaeronauticalpropellerbladecanvaryinsuchawiderangethatthiseffectscannotbeneglectedwithoutanunacceptablelossofaccuracy.IfaerodynamicdataexhaustivelyincludecompressibilityeffectsitispossibletointerpolateaerodynamicdatawithrespecttoMachnumberinthesamewayasitisdoneforReynoldsnumber.WhentheavailabledataarelimitedtolowMachnumber,asemi-empiricalfactorisderivedsoastoprovidethenecessarycorrectionforclandcdduetocompressibilityeffectsfromtheirvaluesforthecaseofnoncompressibleflow
Thecorrectionfactorusedinthepresentpaperwasoriginallyderivedforsymmetricalairfoilswithrelativethicknesst=0.21,forMa<0,9and-25°25°,butitisreasonabletoextendtheuseofthiscorrectiontoairfoilswithmoderatecamberandhighervaluesofrelativethickness.
Thedeterminationofthecorrectionfactorisbasedon:
thedeterminationofthelocalcriticalMachnumber
thedeterminationofthelocaldrag-riseMachnumber
thecorrectionoftheaerodynamiccoefficients
ThecriticalMachnumberisrelatedtotheminimumpressurecoefficientactingontheairfoilinanon-compressibleflowby([4],[5]):
(34)
Reference6providesthevalueoftheminimumpressurecoefficientatzeroliftincidence,cpi,min0,forseveralairfoil.Fromthisdataitispossibletoexpresscpi,min0forthe4digitNACAprofilesasafunctionoftherelativethicknessasfollows:
(35)
Anotherrelationbetweenminimumpressurecoefficientandliftcoefficientinincompressibleflowandrelativethicknesst,isdiscussedinRef.7:
(36)
Theresultsobtainedfromthislatterapproachshowapooragreementwithexperimentaldata,asitisclearlyvisibleinFig.2.
Abetterrepresentationisobtainedbyaddingtocpi,min0acontributionproportionaltocli2/t,withacoefficientasmallerthanunity.Comparisonwiththesameexperimentaldataprovidedforaavalueof0.75,sothatwecanexpresscpi,minas:
(37)
ThevalueofthecriticalMachnumberisobtainedsolvingthefollowingequation:
(38)
InmostcasesMacrindicatesathresholdbeyondwhichcompressibilityeffectsonaerodynamicperformancecannolongerbeneglected,eveniftherearenoimmediateconsequences.ButwhentheratioMa/Macrisgreaterthanavaluebetween1.04and1.20,dragincreasesdramatically.
ThevalueofMaforwhichdcd/dMa=0.1isthedragriseMachnumber,MaDR,andindicatesalimitbeyondwhichairfoilaerodynamicperformancedegradesseriously.
FromtheexperimentaldatareportedinRef.[8]and[6],arelationbetweenMaDRandMacrisderived,wheretheliftcoefficientinincompressibleflowappearsasaparameter:
(39)
WhenMa<MaDR,theliftcoefficientincreaseswithMachnumber,forthesameincidence.
Theliftcoefficientincompressibleflow,clc,isobtainedaccordingtoKaplanrelation(thatisamodifiedversionofPrandtl-Glauertcorrectionfactor):
(40)
(41)
ForMa>MaDR,liftcoefficientstartstodecreasewithMachnumber,withaminimumforMa0.9.Inthiscasethecorrectionfactoris:
(42)
ThedragcoefficientcddoesnotdependonMachnumberbelowMaDR,but,forMa>MaDR,energylosscausedbytheshockwaveisresponsibleofasharpincreaseinaerodynamicdrag.Thedragcoefficientisevaluatedaddingtoitsvaluefornon-compressibleflowCdiacontributionduetowavedrag,accordingto[9],[10]:
(43)
Acomparisonbetweenexperimentaldata(inRef.[8])andresultsobtainedaccordingtothecorrectionsofnon-compressiblecoefficientsisreportedinFigs.3and4.Itisevidentthatwehavegoodagreementforvaluesoftheangleofattackbelowstall.Asafinalconsiderationonthiscorrectionprocedureforcompressibilityeffects,weunderlinethattheresultsareaccurateforsymmetricalprofiles,withthicknessratiolessthan0.15andforMachnumberbetween0.3and0.9,inthelinearrangeoftheliftcurve.Thesimplicityoftheprocedureallowsforareducedcomputationaleffort.
Characteristicsofann-bladespropellerofradiusR
Thefeatheringaxisoftheblade,representedbyanon-dimensionalcoordinateintheinterval[0,1],isdividedintomelements,thusdefiningm+1sections.Theactiveportionofthebladebeginsatminandnisthenumberofsectionswithmin.Ifnpsectionsairfoilsofknowncharacteristicsareused,thegenericairfoilatcoordinatealongthebladewillbeidentifiedbythedistancexfromtheclosestairfoiliponthehubsideandthedistance1-xfromtheclosestairfoilip+1onthetipside.
Ourproblemcanbestatedasfollows:evaluatethrust,torqueandefficiencyofapropellerwithnbladesofknowngeometry(radiusR,chorddistribution,twistangle),fromtheaerodynamiccharacteristicsoftheairfoilused,forgivenoperatingconditions(forwardspeed,V,angularvelocity,,altitudeandbladepitch,thelatterbeingdefinedasthepitchangleofthesectionat0.75·R).
Foranybladesectionthelocalaerodynamiccharacteristicsareevaluatedaccordingtowingtheory.Itisthusnecessarytocalculateactualvelocity,itsanglewithrespecttothepropellerdiskandtheaerodynamiccoefficientsofthesectionsasafunctionoftheinducedincidence.
Innon-dimensionaltermsthethrustandtorquecoefficientsandthepropellerefficiencyareevaluatedasafunctionofbladenumbern,b(),tw,airfoilcharacteristics,,Re,Ma,.
Thesoftwareinputisdividedintotwosetsofparameters,thefirstonefordescribingthepropelleroperatingpoint,thesecondforthepropelleraerodynamiccharacteristicsanddiscretizationparameters:
bladenumber,n
numberofdiscretizationintervals,n
numberofairfoilswithknownaerodynamiccharacteristics,np
aerodynamiccharacteristicsoftheknownairfoils
foreachvalueofj,j=1,2,…,n,thevaluesofb,tw,ip(indexoftheclosestknownairfoilonthehubside,i.e.airfoil1),ip+1(indexoftheclosestknownairfoilonthetipside,i.e.airfoil2),thevalueofx,non-dimensionaldistancefromairfoil1,i.e.x_=_(j–ip)/(ip+1–ip).
Foreverysectiontheevaluationoftheaerodynamiccoefficientsiscarriedoutaccordingtotheprocedureoutlinedinthepreviousparagraph.Giventhevaluesof,Re,Ma,,n,b,twandprofiledistributionalongtheblade,thevaluesof,,andiaredeterminedbyiterationfori.Startingfromtherelations:
(44)
(45)
(46)
(47)
(48)
thelocalaerodynamiccoefficientsareevaluated:
(49)
(50)
(51)
(52)
Onceconvergenceoniisreached,thelocalincrementsforthrustandtorquecoefficientsareexpressedasfollows:
(53)
(54)
Finallythevaluesofdanddareintegratedalongthebladespan,giving:
(55)
(56)
(57)
Comparisonwithexperimentaldata
AcomparisonbetweennumericalresultsandexperimentaldatareportedinRef.11ispresentedinFigs.5,6and7tovalidatetheproposedalgorithm.TheaerodynamiccharacteristicsoftheairfoilsoftheNACA44XXseriesusedforthepropelleranalyzedinRef.11wereobtainedfromRefs.12and6.
Thevaluesof,andarereportedinFigs.5,6and7,respectively,asafunctionoftheadvanceratio.
TheagreementbetweenourmethodandexperimentalresultsappearssatisfactorywhentherepresentativesectionlocalMachnumberisbelowMaDRandisangleofattackisbelowstall.Forhighervaluesoflocalvelocityorbladepitchangletheempiricalcorrectionsarenolongersufficientforobtaininganaccuraterepresentationofthecomplexphysicalphenomenaaroundaconsistentportionoftheblade.
Inparticular,theplotsshowanoveroptimisticpredictionofthepropellerperformanceforhighvaluesofthebladepitchangle.
Designofthemaximumefficiencypropeller
Inthisparagraphanumericalprocedureforthedeterminationoftwistangleandchorddistributionasafunctionofthedistancerfromthehubforann-bladepropellerofradiusRispresented.TheoptimumpropellerwillminimizestheenergylossforprovidingarequiredthrustT,giventheoperatingpointintermsofforwardspeed,propellerangularvelocityandaltitude.
Themaximumefficiencyofthepropellerwillbeobtainedifalltheairfoilsalongthebladespanareattheirmaximumefficiencyangleofattack.Foreachsection,theangleofattackformaximumefficiencyisdetermined,asafunctionoflocalReynoldsandMachnumber.Aniterativeprocedureisnecessaryfordeterminingthevalueoftheairfoilchordforagivensection.
Theresultingchordandtwistangledistributionsalongthebladewilldependon4independentparameters,thrustcoefficient,advanceratio,ReynoldsandMachnumbers,Re,Ma.Aparametricstudyoftheoptimumbladeshapeasafunctionoftheseparametersprovidesinterestingresults.
Thenumericalprocedurefordeterminingtheoptimumbladeshape,canbesummarizedasfollows.
Again,theinputdatacanbegroupedintothreesets,afirstonefortheoperatingpoint,,,ReandMa,andasecondone,withthepropellercharacteristicsalreadyassignedbythedesigner:
bladenumber,n,
airfoildistributionalongtheblade,
aerodynamiccharacteristicsoftheairfoilusedandthelastone,givenbythedisctretizationparameters.
Firstofall,theLagrangemultiplierKisdetermined:
foreverysectioniofthediscretizedblade,wherei=1,2,…,n,itis:
(58)
(59)
Theequation
(60)
isthensolvednumericallybyabisectionmethod.
Thedistributionoftwistangleandprofilechordalongthebladeisdeterminedasfollows.Theangleandthelocalvelocityaregivenby:
(61)
(62)
(63)
Foreachsectionithefollowingequationsareiterateduntilconvergenceisreached:
(64)
(65)
Thentheangleofattachofmaximumefficiencyisdetermined:
(66)
wherexand1-xaretherelativedistancefromthenearestknownairfoils(seepar.4)
(67)
Whenconvergenceisreached,theresultinglocalpitchangleisgivenby:
(68)
Thentheglobalcharacteristicsaredeterminedbynumericalintegrationof
(69)
(70)
where
(71)
(72)
Theresultingefficiencyis
(73)
Attheendoftheprocedureitisnecessarytocheckwhethertheassignedbladenumberniscompatiblewiththeprescribedoperatingpoint.Inparticular,ifbmax/R<0.15itisnecessarytoreducenforstructuralreasons,whileifbmax/R>0.24,increasingncanproducesignificantimprovementintermsofaerodynamicefficiency.
Parametricanalysisoftheoptimumblade
Thegeometryoftheoptimumbladedependsonthenon-dimensionalparameters,,ReandMa.Aparametricstudyispresented,limiting,forthesakeofsimplicity,theanalysistothestudyoftwo-bladedpropellerswithconstantairfoilNACA0012.Thecharacteristicsofthisairfoilareknownwithgreatdetailandthecompressibilitycorrectionisparticularlywellsuited.
Therangeofvariationoftheparametersrepresentingtheoperatingpointofthepropelleraredeterminedtakingintoconsideration20singleengineairplaneswithtwobladepropellers.
Theircharacteristicsintermsofcruisealtitudeandairspeed,thrust,diametera
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《倉庫庫存管理系統(tǒng)》課件
- 《小學(xué)細(xì)節(jié)描寫》課件
- 單位管理制度合并匯編【職員管理】
- 四川省南充市重點高中2024-2025學(xué)年高三上學(xué)期12月月考地理試卷含答案
- 《運算律》教案(20篇)
- 2024管理演講稿(33篇)
- 《微觀經(jīng)濟(jì)學(xué)》試題及參考答案(三)
- 《倉庫設(shè)備管理》課件
- 《宋璽事例作文》課件
- 《流感的合理用藥》課件
- 產(chǎn)品經(jīng)理必備BP模板(中文版)
- 維西縣城市生活垃圾熱解處理工程環(huán)評報告
- GB/T 9128.2-2023鋼制管法蘭用金屬環(huán)墊第2部分:Class系列
- 網(wǎng)絡(luò)經(jīng)濟(jì)學(xué)PPT完整全套教學(xué)課件
- 2023年主治醫(yī)師(中級)-臨床醫(yī)學(xué)檢驗學(xué)(中級)代碼:352考試參考題庫附帶答案
- 機(jī)械原理課程設(shè)計鎖梁自動成型機(jī)床切削機(jī)構(gòu)
- 順產(chǎn)臨床路徑
- 人教版培智一年級上生活適應(yīng)教案
- 推動架機(jī)械加工工序卡片
- RoHS檢測報告完整版
- 中國近現(xiàn)代史綱要(上海建橋?qū)W院)智慧樹知到答案章節(jié)測試2023年
評論
0/150
提交評論