2023-2024學(xué)年山東省濱州市五校中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
2023-2024學(xué)年山東省濱州市五校中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
2023-2024學(xué)年山東省濱州市五校中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
2023-2024學(xué)年山東省濱州市五校中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
2023-2024學(xué)年山東省濱州市五校中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年山東省濱州市五校中考數(shù)學(xué)對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若,則括號內(nèi)的數(shù)是A. B. C.2 D.82.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關(guān)于BD對稱3.已知為單位向量,=,那么下列結(jié)論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反4.一組數(shù)據(jù)8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是()A.8,6B.7,6C.7,8D.8,75.下列天氣預(yù)報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6.計算3–(–9)的結(jié)果是()A.12 B.–12 C.6 D.–67.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間8.3月22日,美國宣布將對約600億美元進口自中國的商品加征關(guān)稅,中國商務(wù)部隨即公布擬對約30億美元自美進口商品加征關(guān)稅,并表示,中國不希望打貿(mào)易戰(zhàn),但絕不懼怕貿(mào)易戰(zhàn),有信心,有能力應(yīng)對任何挑戰(zhàn).將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10109.在,,0,1這四個數(shù)中,最小的數(shù)是A. B. C.0 D.110.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.太極揉推器是一種常見的健身器材.基本結(jié)構(gòu)包括支架和轉(zhuǎn)盤,數(shù)學(xué)興趣小組的同學(xué)對某太極揉推器的部分數(shù)據(jù)進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉(zhuǎn)盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為_____cm.(結(jié)果保留根號)12.分解因式:=.13.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).14.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉(zhuǎn)一定角度得到△ADE,當點B的對應(yīng)點D恰好落在BC邊上時,則CD的長為_____.15.A、B兩地之間為直線距離且相距600千米,甲開車從A地出發(fā)前往B地,乙騎自行車從B地出發(fā)前往A地,已知乙比甲晚出發(fā)1小時,兩車均勻速行駛,當甲到達B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發(fā)的時間t(小時)之間的圖象,則當甲第二次與乙相遇時,乙離B地的距離為_____千米.16.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.三、解答題(共8題,共72分)17.(8分)為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+1.設(shè)這種產(chǎn)品每天的銷售利潤為w元.求w與x之間的函數(shù)關(guān)系式.該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?18.(8分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設(shè)點P的運動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.19.(8分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內(nèi)切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.20.(8分)如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個景點A、B、C,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D,經(jīng)測量,景點D位于景點A的北偏東30′方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.景區(qū)管委會準備由景點D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結(jié)果精確到0.1km).求景點C與景點D之間的距離.(結(jié)果精確到1km).21.(8分)如圖1,點P是平面直角坐標系中第二象限內(nèi)的一點,過點P作PA⊥y軸于點A,點P繞點A順時針旋轉(zhuǎn)60°得到點P',我們稱點P'是點P的“旋轉(zhuǎn)對應(yīng)點”.(1)若點P(﹣4,2),則點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標為;若點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標為(﹣5,16)則點P的坐標為;若點P(a,b),則點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標為;(2)如圖2,點Q是線段AP'上的一點(不與A、P'重合),點Q的“旋轉(zhuǎn)對應(yīng)點”是點Q',連接PP'、QQ',求證:PP'∥QQ';(3)點P與它的“旋轉(zhuǎn)對應(yīng)點”P'的連線所在的直線經(jīng)過點(,6),求直線PP'與x軸的交點坐標.22.(10分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關(guān)于直線PC的對稱點E,設(shè)點P的運動時間為t(s).(1)若m=5,求當P,E,B三點在同一直線上時對應(yīng)的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.23.(12分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當?shù)拇笮M足什么條件時,四邊形是菱形?請回答并證明你的結(jié)論.24.有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小懷根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小懷的探究過程,請補充完成:(1)函數(shù)的自變量x的取值范圍是;(2)列出y與x的幾組對應(yīng)值.請直接寫出m的值,m=;(3)請在平面直角坐標系xOy中,描出表中各對對應(yīng)值為坐標的點,并畫出該函數(shù)的圖象;(4)結(jié)合函數(shù)的圖象,寫出函數(shù)的一條性質(zhì).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù),可得答案.【詳解】解:,

故選:C.【點睛】本題考查了有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù).2、A【解析】

由BD是∠ABC的角平分線,根據(jù)角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據(jù)兩直線平行,得到一對內(nèi)錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據(jù)等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質(zhì).學(xué)生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內(nèi)錯角相等,借助轉(zhuǎn)化的數(shù)學(xué)思想解決問題.這是一道較易的證明題,鍛煉了學(xué)生的邏輯思維能力.3、C【解析】

由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.【點睛】本題考查了向量的方向,是基礎(chǔ)題,較簡單.4、D【解析】試題分析:根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.把這組數(shù)據(jù)從小到大排列:3,6,7,7,8,8,8,8出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是8;最中間的數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是7考點:(1)眾數(shù);(2)中位數(shù).5、A【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.6、A【解析】

根據(jù)有理數(shù)的減法,即可解答.【詳解】故選A.【點睛】本題考查了有理數(shù)的減法,解決本題的關(guān)鍵是熟記減去一個數(shù)等于加上這個數(shù)的相反數(shù).7、C【解析】

求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數(shù)的大小和二次根式的性質(zhì),解此題的關(guān)鍵是得出<<,題目比較好,難度不大.8、A【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為,故選A.【點睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、A【解析】【分析】根據(jù)正數(shù)大于零,零大于負數(shù),正數(shù)大于一切負數(shù),即可得答案.【詳解】由正數(shù)大于零,零大于負數(shù),得,最小的數(shù)是,故選A.【點睛】本題考查了有理數(shù)比較大小,利用好“正數(shù)大于零,零大于負數(shù),兩個負數(shù)絕對值大的反而小”是解題關(guān)鍵.10、A【解析】分析:根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.詳解:A、是中心對稱圖形,故本選項正確;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤;故選:A.點睛:本題考查了中心對稱圖形的特點,屬于基礎(chǔ)題,判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、10【解析】

作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點睛】本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考常考題型.12、a(a+2)(a-2)【解析】

13、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設(shè),則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担!唷?4、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉(zhuǎn)一定角度得到△ADE,當點B的對應(yīng)點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉(zhuǎn)的性質(zhì)可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.15、【解析】

根據(jù)題意和函數(shù)圖象可以分別求得甲乙的速度,從而可以得到當甲第二次與乙相遇時,乙離B地的距離.【詳解】設(shè)甲的速度為akm/h,乙的速度為bkm/h,,解得,,設(shè)第二次甲追上乙的時間為m小時,100m﹣25(m﹣1)=600,解得,m=,∴當甲第二次與乙相遇時,乙離B地的距離為:25×(-1)=千米,故答案為.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.16、1.【解析】

根據(jù)(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,

∴(a+b)(a-b)=8,

∵a+b=4,

∴a-b=1,

故答案是:1.【點睛】考查了平方差,關(guān)鍵是掌握(a+b)(a-b)=a1-b1.三、解答題(共8題,共72分)17、(1);(2)該產(chǎn)品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元;(3)該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克25元.【解析】

(1)根據(jù)銷售額=銷售量×銷售價單x,列出函數(shù)關(guān)系式.(2)用配方法將(2)的函數(shù)關(guān)系式變形,利用二次函數(shù)的性質(zhì)求最大值.(3)把y=150代入(2)的函數(shù)關(guān)系式中,解一元二次方程求x,根據(jù)x的取值范圍求x的值.【詳解】解:(1)由題意得:,∴w與x的函數(shù)關(guān)系式為:.(2),∵﹣2<0,∴當x=30時,w有最大值.w最大值為2.答:該產(chǎn)品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元.(3)當w=150時,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合題意,應(yīng)舍去.答:該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克25元.18、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解析】

(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當點P在線段AB上運動時,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當點P在射線AB上運動時,即t>4,此時,EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點F為圓心的⊙F恰好與直線AB、BC相切時,PF=FG,分以下三種情況:①當t=0或t=4時,顯然符合條件的⊙F不存在;②當0<t<4時,如解圖1,作FG⊥BC于點G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時⊙F的半徑PF=;③當t>4時,如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時⊙F的半徑PF=12.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,動點的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想.解題的關(guān)鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì).19、(1)1;(2)【解析】(1)由勾股定理求AB,設(shè)⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據(jù)CG平分直角∠ACB可知△PCG為等腰直角三角形,設(shè)PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設(shè)GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.20、(1)景點D向公路a修建的這條公路的長約是3.1km;(2)景點C與景點D之間的距離約為4km.【解析】

解:(1)如圖,過點D作DE⊥AC于點E,過點A作AF⊥DB,交DB的延長線于點F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD?sin∠DBE=×(4﹣3)=≈3.1(km),∴景點D向公路a修建的這條公路的長約是3.1km;(2)由題意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景點C與景點D之間的距離約為4km.21、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點坐標(﹣,0)【解析】

(1)①當P(-4,2)時,OA=2,PA=4,由旋轉(zhuǎn)知,∠P'AH=30°,進而P'H=P'A=2,AH=P'H=2,即可得出結(jié)論;②當P'(-5,16)時,確定出P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH-AH=16-5,即可得出結(jié)論;③當P(a,b)時,同①的方法得,即可得出結(jié)論;(2)先判斷出∠BQQ'=60°,進而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結(jié)論;(3)先確定出yPP'=x+3,即可得出結(jié)論.【詳解】解:(1)如圖1,①當P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉(zhuǎn)知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當P'(﹣5,16)時,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當P(a,b)時,同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設(shè)yPP'=kx+b',由題意知,k=,∵直線經(jīng)過點(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點坐標(﹣,0).【點睛】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),待定系數(shù)法,解本題的關(guān)鍵是理解新定義.22、(1)1;(1)≤m<.【解析】

(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.②如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.【詳解】解:(1):(1)如圖1中,設(shè)PD=t.則PA=5-t.

∵P、B、E共線,

∴∠BPC=∠DPC,

∵AD∥BC,

∴∠DPC=∠PCB,

∴∠BPC=∠PCB,

∴BP=BC=5,

在Rt△ABP中,∵AB1+AP1=PB1,

∴31+(5-t)1=51,

∴t=1或9(舍棄),∴t=1時,B、E、P共線.(1)如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.作EQ⊥BC于Q,EM⊥DC于M.則EQ=1,CE=DC=3易證四邊形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴EM=,∵∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論