版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河南省商丘市重點中學(xué)高三下學(xué)期第二次考試數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.2.若實數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.23.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.4.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1475.已知實數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.116.如圖所示,三國時代數(shù)學(xué)家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機拋擲200顆米粒(大小忽略不計,?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.647.已知為銳角,且,則等于()A. B. C. D.8.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.9.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁10.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.1211.函數(shù)的定義域為()A. B. C. D.12.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則________.14.若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.15.已知,滿足約束條件,則的最小值為______.16.已知向量,,若滿足,且方向相同,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)當時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當時,若方程有兩個不相等的實數(shù)根,求證:.19.(12分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當時,討論零點的個數(shù).20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.21.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.22.(10分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應(yīng)用,如.2.C【解析】
作出可行域,直線目標函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當過點時,取得最大值1.故選:C.本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個封閉圖形.3.A【解析】
設(shè),延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設(shè),延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.4.B【解析】
結(jié)合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B本題考查隨機模擬的概念和幾何概型,屬于基礎(chǔ)題5.A【解析】
根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.6.B【解析】
設(shè)大正方體的邊長為,從而求得小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O(shè)大正方體的邊長為,則小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B本題主要考查了概率模擬的應(yīng)用,考查計算能力,屬于基礎(chǔ)題。7.C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎(chǔ)題.8.A【解析】
由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對新定義的理解.9.C【解析】
分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設(shè)甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設(shè)乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設(shè)丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設(shè)丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設(shè)成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.10.B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B11.C【解析】
函數(shù)的定義域應(yīng)滿足故選C.12.A【解析】
解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.此題考查求集合的并集,關(guān)鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
項和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算,分類討論的能力,屬于中檔題.14.【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數(shù)k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.15.2【解析】
作出可行域,平移基準直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16.【解析】
由向量平行坐標表示計算.注意驗證兩向量方向是否相同.【詳解】∵,∴,解得或,時,滿足題意,時,,方向相反,不合題意,舍去.∴.故答案為:1.本題考查向量平行的坐標運算,解題時要注意驗證方向相同這個條件,否則會出錯.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)取中點,連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設(shè)平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.本題考查了面面垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.18.(1);(2)當時,在上是減函數(shù);當時,在上是增函數(shù);(3)證明見解析.【解析】
(1)當時,,求得其導(dǎo)函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導(dǎo)函數(shù),并得出導(dǎo)函數(shù)取得正負的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當時,,,由(2)得的單調(diào)區(qū)間,以當方程有兩個不相等的實數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),分析其導(dǎo)函數(shù)的正負得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當時,,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當時,,當時,,所以在上是減函數(shù),在上是增函數(shù);(3)當時,,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時,,當時,,,所以當方程有兩個不相等的實數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),則,當時,所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.本題考查運用導(dǎo)函數(shù)求函數(shù)在某點的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當?shù)暮瘮?shù),得出其導(dǎo)函數(shù)的正負,得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.19.(1);(2)見解析.【解析】
(1)設(shè)切點坐標為,然后根據(jù)可解得實數(shù)的值;(2)令,,然后對實數(shù)進行分類討論,結(jié)合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),,設(shè)曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數(shù)為增函數(shù);當時,,此時,函數(shù)為減函數(shù).,.①當,即當時,函數(shù)有一個零點;②當,即當時,函數(shù)有兩個零點;③當,即當時,函數(shù)有三個零點;④當,即當時,函數(shù)有兩個零點;⑤當,即當時,函數(shù)只有一個零點.綜上所述,當或時,函數(shù)只有一個零點;當或時,函數(shù)有兩個零點;當時,函數(shù)有三個零點.本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.20.(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當時,,即在上增;當時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當時,,在單調(diào)遞增,所以滿足題意;當時,,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.21.(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角.【詳解】解:(1)當為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《立秋健康養(yǎng)生》課件
- 2021學(xué)年天津市楊村一中、寶坻一中等四校高一下學(xué)期期末聯(lián)考地理試題
- 小學(xué)一年級20以內(nèi)數(shù)學(xué)口算練習(xí)題大全
- 國際貿(mào)易試卷答案解讀
- 幼兒園傳染病預(yù)防工作領(lǐng)導(dǎo)小組
- 年度第一學(xué)期歷史科期末考試試卷
- 高考語文分鐘專題突破(2):字形
- 北京市大興區(qū)2022-2023學(xué)年高三上學(xué)期期末試卷英語試題
- 餐飲娛樂場所保安工作經(jīng)驗
- 能源行業(yè)話務(wù)員工作心得
- 齊魯名家 談方論藥智慧樹知到期末考試答案2024年
- 小學(xué)六年級數(shù)學(xué)100道題解分數(shù)方程
- 南京工業(yè)大學(xué)橋梁工程課程設(shè)計
- 鋼管購銷合同
- 基于51單片機的簡易計算器時間顯示(LCD1602顯示)
- 2022國開大學(xué)電大??啤掇r(nóng)科基礎(chǔ)化學(xué)》期末試題及答案
- 醫(yī)院設(shè)備科工作流程圖
- 《眼睛結(jié)構(gòu)與功能》PPT課件.ppt
- 村委會實虛線信紙.
- GB∕T 39757-2021 建筑施工機械與設(shè)備 混凝土泵和泵車安全使用規(guī)程
- 電梯公司安全生產(chǎn)管理制度匯編.doc
評論
0/150
提交評論