![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第五章 數(shù)列(解析卷)_第1頁](http://file4.renrendoc.com/view14/M05/1E/24/wKhkGWa-miKAZfhbAAGWT-Gi25s840.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第五章 數(shù)列(解析卷)_第2頁](http://file4.renrendoc.com/view14/M05/1E/24/wKhkGWa-miKAZfhbAAGWT-Gi25s8402.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第五章 數(shù)列(解析卷)_第3頁](http://file4.renrendoc.com/view14/M05/1E/24/wKhkGWa-miKAZfhbAAGWT-Gi25s8403.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第五章 數(shù)列(解析卷)_第4頁](http://file4.renrendoc.com/view14/M05/1E/24/wKhkGWa-miKAZfhbAAGWT-Gi25s8404.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第五章 數(shù)列(解析卷)_第5頁](http://file4.renrendoc.com/view14/M05/1E/24/wKhkGWa-miKAZfhbAAGWT-Gi25s8405.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)列本試卷22小題,滿分150分??荚囉脮r120分鐘一、單項選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(2023·浙江杭州·統(tǒng)考二模)在數(shù)列SKIPIF1<0中,“數(shù)列SKIPIF1<0是等比數(shù)列”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】利用等比數(shù)列的性質(zhì)及充分不必要條件的定義即可判斷,【詳解】數(shù)列SKIPIF1<0是等比數(shù)列,得SKIPIF1<0,若數(shù)列SKIPIF1<0中SKIPIF1<0,則數(shù)列SKIPIF1<0不一定是等比數(shù)列,如數(shù)列SKIPIF1<0,所以反之不成立,則“數(shù)列SKIPIF1<0是等比數(shù)列”是“SKIPIF1<0”的充分不必要條件.故選:A.2.(2023?江西一模)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0A.150 B.160 C.170 D.與SKIPIF1<0和公差有關(guān)【答案】B【分析】根據(jù)題意,由等差數(shù)列的性質(zhì)可得SKIPIF1<0,由此計算可得答案.【詳解】解:根據(jù)題意,等差數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.故選B.3.(2023?吉林一模)已知SKIPIF1<0為等比數(shù)列,SKIPIF1<0是它的前SKIPIF1<0項和,若SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的等差中項為SKIPIF1<0,則SKIPIF1<0等于SKIPIF1<0SKIPIF1<0A.35 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)等比數(shù)列的公比為SKIPIF1<0,由已知可得首項和公比的方程,解得首項和公比,再由等比數(shù)列的求和公式求解.【詳解】解:設(shè)等比數(shù)列SKIPIF1<0的公比設(shè)為SKIPIF1<0,由SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的等差中項為SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.故選C.4.(2023·山東菏澤·統(tǒng)考一模)2020年12月17日凌晨1時59分,嫦娥五號返回器攜帶月球樣品成功著陸,這是我國首次實現(xiàn)了地外天體采樣返回,標(biāo)志著中國航天向前又邁出了一大步.月球距離地球約38萬千米,有人說:在理想狀態(tài)下,若將一張厚度約為0.1毫米的紙對折SKIPIF1<0次其厚度就可以超過到達(dá)月球的距離,那么至少對折的次數(shù)SKIPIF1<0是()(SKIPIF1<0,SKIPIF1<0)A.40 B.41 C.42 D.43【答案】C【解析】【分析】設(shè)對折SKIPIF1<0次時,紙的厚度為SKIPIF1<0,則SKIPIF1<0是以SKIPIF1<0為首項,公比為SKIPIF1<0的等比數(shù)列,求出SKIPIF1<0的通項,解不等式SKIPIF1<0即可求解【詳解】設(shè)對折SKIPIF1<0次時,紙的厚度為SKIPIF1<0,每次對折厚度變?yōu)樵瓉淼腟KIPIF1<0倍,由題意知SKIPIF1<0是以SKIPIF1<0為首項,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,所以至少對折的次數(shù)SKIPIF1<0是SKIPIF1<0,故選:C5.(貴州凱里一中2023屆高三三模)正項等比數(shù)列SKIPIF1<0的前n項積為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則下列判斷錯誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0的最大值為SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先根據(jù)題干條件判斷出SKIPIF1<0,然后結(jié)合等比數(shù)列的性質(zhì)逐一分析每個選項.【詳解】由SKIPIF1<0知:SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0,此時SKIPIF1<0,但與SKIPIF1<0矛盾,故SKIPIF1<0,故SKIPIF1<0,故A正確,根據(jù)等比中項可得,SKIPIF1<0,B正確;由于SKIPIF1<0,顯然C正確,SKIPIF1<0,D錯誤.故選:D6.(2023春·吉林通化二模)數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,對一切正整數(shù)n,點SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意知SKIPIF1<0①,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0②,①-②,得SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,符合題意,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:D.7.(2023·河南·校聯(lián)考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.2n C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,兩式作差可得:SKIPIF1<0,化簡整理可得:SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項為1,公差為1的等差數(shù)列,所以SKIPIF1<0,進(jìn)而可得:SKIPIF1<0.故選:D.8.(2023?福建一模)任意寫出一個正整數(shù)SKIPIF1<0,并且按照以下的規(guī)律進(jìn)行變換:如果SKIPIF1<0是個奇數(shù),則下一步變成SKIPIF1<0,如果SKIPIF1<0是個偶數(shù),則下一步變成SKIPIF1<0,無論SKIPIF1<0是怎樣一個數(shù)字,最終必進(jìn)入循環(huán)圈SKIPIF1<0,這就是數(shù)學(xué)史上著名的“冰雹猜想”.它可以表示為數(shù)列SKIPIF1<0為正整數(shù)),SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0的所有可能取值之和為SKIPIF1<0SKIPIF1<0A.188 B.190 C.192 D.201【答案】B【分析】根據(jù)“冰雹猜想”,一一列舉出所有可能的情況即可.【詳解】解:由題意,SKIPIF1<0的可能情況有:①SKIPIF1<0:②SKIPIF1<0;③SKIPIF1<0:④SKIPIF1<0⑤SKIPIF1<0:⑥SKIPIF1<0.SKIPIF1<0.SKIPIF1<0的所有可能取值為2,16,20,3,128,21,所有可能取值的和為190.故選B.二、多項選擇題:本題共4小題,每小題5分,共20分。在每小題給出的選項中,有多項符合題目要求。全部選對的得5分,部分選對的得2分,有選錯的得0分。9.(2023·福建·統(tǒng)考一模)記正項等比數(shù)列an的前n項和為Sn,則下列數(shù)列為等比數(shù)列的有(A.a(chǎn)n+1+an B.a(chǎn)【答案】AB【分析】根據(jù)等比數(shù)列的定義和前n項公式和逐項分析判斷.【詳解】由題意可得:等比數(shù)列an的首項a1>0,公比q對A:an+1+an對B:an+1an>0∵Sn對C:Sn+1a對D:Sn+1S故選:AB.10.(遼寧省部分學(xué)校2022-2023學(xué)年高三下學(xué)期第二次模擬考試數(shù)學(xué)試題)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中出現(xiàn)了如圖所示的形狀,后人稱為“三角垛”“三角垛”的最上層有1個球,第二層有3個球,第三層有6個球,…,設(shè)各層球數(shù)構(gòu)成一個數(shù)列SKIPIF1<0,且SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則正確的選項是(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】運用累和法、裂項相消法,結(jié)合等差數(shù)列的前n項和公式逐一判斷即可.【詳解】由題意可知:SKIPIF1<0,于是有SKIPIF1<0,顯然可得:SKIPIF1<0,SKIPIF1<0,因此選項A不正確,選項B正確;當(dāng)SKIPIF1<0時,SKIPIF1<0,顯然SKIPIF1<0適合上式,SKIPIF1<0,因此選項D不正確;SKIPIF1<0,SKIPIF1<0,因此選項C正確,故選:BC11.(2023·山東棗莊·統(tǒng)考二模)已知SKIPIF1<0為等差數(shù)列,前n項和為SKIPIF1<0,SKIPIF1<0,公差SKIPIF1<0,則(
)A.SKIPIF1<0B.當(dāng)SKIPIF1<0戓6時,SKIPIF1<0取得最小值為30C.?dāng)?shù)列SKIPIF1<0的前10項和為50D.當(dāng)SKIPIF1<0時,SKIPIF1<0與數(shù)列SKIPIF1<0共有671項互為相反數(shù).【答案】AC【解析】因為等差數(shù)列SKIPIF1<0,且SKIPIF1<0,公差SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以選項A正確;因為SKIPIF1<0,根據(jù)二次函數(shù)的對稱性及開口向下可知:SKIPIF1<0取得最大值為SKIPIF1<0,故選項B錯誤;記SKIPIF1<0的前10項和為SKIPIF1<0,因為SKIPIF1<0,當(dāng)SKIPIF1<0時,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,解得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選項C正確;記SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0為偶數(shù),若SKIPIF1<0與SKIPIF1<0互為相反數(shù),則SKIPIF1<0,且SKIPIF1<0為偶數(shù),由SKIPIF1<0,所以SKIPIF1<0為偶數(shù),即SKIPIF1<0為偶數(shù),即SKIPIF1<0為偶數(shù),即SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0為偶數(shù),所以SKIPIF1<0,且為偶數(shù),故這樣的SKIPIF1<0有670個,故選項D錯誤.故選:AC12.(2023·浙江·校聯(lián)考二模)定義:若存在正實數(shù)M使SKIPIF1<0,則稱正數(shù)列SKIPIF1<0為有界正數(shù)列.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和.則(
)A.?dāng)?shù)列SKIPIF1<0為遞增數(shù)列 B.?dāng)?shù)列SKIPIF1<0為遞增數(shù)列C.?dāng)?shù)列SKIPIF1<0為有界正數(shù)列 D.?dāng)?shù)列SKIPIF1<0為有界正數(shù)列【答案】BC【分析】對于A,設(shè)SKIPIF1<0,求導(dǎo)后放縮為SKIPIF1<0,從而可知當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,即可判斷;對于B,由SKIPIF1<0可知數(shù)列SKIPIF1<0為遞增數(shù)列,即可判斷;對于C,由A分析,即可判斷;對于D,借助不等式SKIPIF1<0,從而可得SKIPIF1<0,即可得到SKIPIF1<0,從而可判斷.【詳解】對于A,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,A錯誤;對于B,因為SKIPIF1<0,所以數(shù)列SKIPIF1<0為遞增數(shù)列,B正確;對于C,由A分析可知,當(dāng)正實數(shù)M為前6項的最大項時,就有SKIPIF1<0,所以數(shù)列SKIPIF1<0為有界正數(shù)列,C正確;對于D,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,D錯誤.故選:BC三、填空題:本大題共4小題,每小題5分,共20分。13.(2023·河北唐山·統(tǒng)考三模)設(shè)SKIPIF1<0為等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0/0.875【詳解】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,由等比數(shù)列求和公式可知SKIPIF1<0.故答案為:SKIPIF1<0.14.(江蘇省七市2023屆高三三模數(shù)學(xué)試題)設(shè)等差數(shù)列{an}的前n項和為Sn,a1≠0,a1+a5=3a2,則SKIPIF1<0_____.【答案】SKIPIF1<0/SKIPIF1<0【分析】由SKIPIF1<0,得到SKIPIF1<0與SKIPIF1<0的關(guān)系,再利用等差數(shù)列的前n項和公式和通項公式求解.【詳解】解:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<015.(2023·山東聊城·統(tǒng)考一模)記SKIPIF1<0為不大于實數(shù)SKIPIF1<0的最大整數(shù),已知數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0,則SKIPIF1<0的前2023項的和SKIPIF1<0______.【答案】4962【解析】【分析】根據(jù)定義表示出SKIPIF1<0由此計算出SKIPIF1<0;【詳解】根據(jù)題意知:SKIPIF1<0SKIPIF1<0;故答案為:496216.(2023·遼寧大連·統(tǒng)考三模)定義:對于各項均為整數(shù)的數(shù)列SKIPIF1<0,如果SKIPIF1<0(SKIPIF1<0=1,2,3,…)為完全平方數(shù),則稱數(shù)列SKIPIF1<0具有“SKIPIF1<0性質(zhì)”;不論數(shù)列SKIPIF1<0是否具有“SKIPIF1<0性質(zhì)”,如果存在數(shù)列SKIPIF1<0與SKIPIF1<0不是同一數(shù)列,且SKIPIF1<0滿足下面兩個條件:(1)SKIPIF1<0是SKIPIF1<0的一個排列;(2)數(shù)列SKIPIF1<0具有“SKIPIF1<0性質(zhì)”,則稱數(shù)列SKIPIF1<0具有“變換SKIPIF1<0性質(zhì)”.給出下面三個數(shù)列:①數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0;②數(shù)列SKIPIF1<0:1,2,3,4,5;③數(shù)列SKIPIF1<0:1,2,3,4,5,6.具有“SKIPIF1<0性質(zhì)”的為________;具有“變換SKIPIF1<0性質(zhì)”的為_________.【答案】①②【詳解】解:對于①,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,2,3,SKIPIF1<0為完全平方數(shù)SKIPIF1<0數(shù)列SKIPIF1<0具有“SKIPIF1<0性質(zhì)”;對于②,數(shù)列1,2,3,4,5,具有“變換SKIPIF1<0性質(zhì)”,數(shù)列SKIPIF1<0為3,2,1,5,4,具有“SKIPIF1<0性質(zhì)”,SKIPIF1<0數(shù)列SKIPIF1<0具有“變換SKIPIF1<0性質(zhì)”;對于③,SKIPIF1<0,1都只有與3的和才能構(gòu)成完全平方數(shù),SKIPIF1<0,2,3,4,5,6,不具有“變換SKIPIF1<0性質(zhì)”.故答案為:①;②.四、解答題:本大題共6小題,共70分,請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(湖北省武漢市2023屆高三下學(xué)期四月調(diào)研)記數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,對任意SKIPIF1<0,有SKIPIF1<0.(1)證明:SKIPIF1<0是等差數(shù)列;(2)若當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,求SKIPIF1<0的取值范圍.【詳解】(1)因為SKIPIF1<0①,則SKIPIF1<0②①-②可得SKIPIF1<0SKIPIF1<0,故SKIPIF1<0為等差數(shù)列.(2)若當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,則有SKIPIF1<0,得SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0.18.(2023·山東煙臺·統(tǒng)考一模)已知等比數(shù)列SKIPIF1<0的各項均為正數(shù),其前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)利用SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列以及SKIPIF1<0求出首項和公比,再利用等比數(shù)列的通項公式寫出即可;(2)由(1)將數(shù)列SKIPIF1<0的通項公式代入SKIPIF1<0中化簡,再利用錯位相減法求和即可.【小問1詳解】設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因為SKIPIF1<0各項均為正數(shù),所以SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.【小問2詳解】由(1)知,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,兩式相減可得SKIPIF1<0SKIPIF1<0,整理可得SKIPIF1<0.19.(南京二模)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)求證:SKIPIF1<0.【詳解】(1)SKIPIF1<0,則SKIPIF1<0,整理得到SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0是常數(shù)列,故SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,驗證SKIPIF1<0時滿足,故SKIPIF1<0(2)SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.20.(2023·浙江·校聯(lián)考二模)設(shè)數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,已知SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0且SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0【分析】(1)利用SKIPIF1<0及等比數(shù)列的定義求SKIPIF1<0的通項公式;(2)討論SKIPIF1<0的奇偶性,應(yīng)用分組求和及等比數(shù)列前n項和公式求SKIPIF1<0.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是首項為1,公比為2的等比數(shù)列,則SKIPIF1<0.(2)由題設(shè)知:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0;綜上,SKIPIF1<0,SKIPIF1<0.21.(浙江省金麗衢十二校、“七彩陽光”2023屆高三下學(xué)期3月聯(lián)考數(shù)學(xué)試題)已知數(shù)列SKIPIF1<0是以d為公差的等差數(shù)列,SKIPIF1<0為SKIPIF1<0的前n項和.(1)若SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0中的部分項組成的數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,4為公比的等比數(shù)列,且SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由SKIPIF1<0,可得SKIPIF1<0,后由等差數(shù)列性質(zhì)可得公差,即可得通項公式;(2)由題可得SKIPIF1<0,SKIPIF1<0.后由SKIPIF1<0是以d為公差的等差數(shù)列,SKIPIF1<0可得數(shù)列SKIPIF1<0是以SKIPIF1<0為首項.4為公比的等比數(shù)列,可求得數(shù)列SKIPIF1<0的通項公式,后由分組求和法可得SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度淘寶店鋪人工智能客服合作協(xié)議
- 2025-2030年增肌塑形添加劑行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 劇場舞臺燈光自動化控制技術(shù)考核試卷
- 2025-2030年手繪地圖制作行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年手繪風(fēng)景明信片套裝行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 搪瓷制品在電力電氣中的應(yīng)用考核試卷
- 農(nóng)藥產(chǎn)品的市場風(fēng)險防范考核試卷
- 二零二五年度北京醫(yī)療設(shè)備行業(yè)勞動合同法律顧問服務(wù)合同
- 美食廣場室內(nèi)設(shè)計合同樣本
- 旅游景區(qū)民宿租賃合同模板
- 分析化學(xué)(高職)PPT完整版全套教學(xué)課件
- 晚熟的人(莫言諾獎后首部作品)
- m拱頂儲罐設(shè)計計算書
- 2023外貿(mào)業(yè)務(wù)協(xié)調(diào)期中試卷
- 新人教鄂教版(2017)五年級下冊科學(xué)全冊教學(xué)課件
- GB/T 29361-2012電子物證文件一致性檢驗規(guī)程
- GB/T 16475-1996變形鋁及鋁合金狀態(tài)代號
- 上海鐵路局勞動安全“八防”考試題庫(含答案)
- 效率提升和品質(zhì)改善方案
- 義務(wù)教育學(xué)科作業(yè)設(shè)計與管理指南
- 物業(yè)客服培訓(xùn)PPT幻燈片課件(PPT 61頁)
評論
0/150
提交評論