版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年黑龍江省伊春市二中第二學(xué)期高三年級期末教學(xué)質(zhì)量檢測試題(一模)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.2.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.已知實數(shù),則的大小關(guān)系是()A. B. C. D.4.隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達(dá)標(biāo)天數(shù)的比重下降了C.8月是空氣質(zhì)量最好的一個月D.6月份的空氣質(zhì)量最差.5.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.6.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.7.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時,.若存在,且為函數(shù)的一個零點(diǎn),則實數(shù)的取值范圍為()A. B. C. D.8.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則()A.2 B.3 C.-2 D.-39.已知橢圓,直線與直線相交于點(diǎn),且點(diǎn)在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.10.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.12.的展開式中的一次項系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA|=|AF1|,則_____.14.如圖,在平行四邊形中,,,則的值為_____.15.?dāng)?shù)列的前項和為,數(shù)列的前項和為,滿足,,且.若任意,成立,則實數(shù)的取值范圍為__________.16.設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時,為的幾何平均數(shù).(只需寫出一個符合要求的函數(shù)即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.18.(12分)已知橢圓()的離心率為,且經(jīng)過點(diǎn).(1)求橢圓的方程;(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.19.(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.20.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.21.(12分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.22.(10分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點(diǎn)E,F(xiàn)分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).求證:(1)直線平面EFG;(2)直線平面SDB.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過點(diǎn)A時,此時直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.2.A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.3.B【解析】
根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.4.D【解析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差.故本題答案選.5.D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.6.B【解析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時,可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.7.D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當(dāng)時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點(diǎn),所以在時有一個零點(diǎn)因為當(dāng)時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.本題主要考查函數(shù)與方程的綜合問題,難度較大.8.B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對這些知識的理解掌握水平.9.A【解析】
先求得橢圓焦點(diǎn)坐標(biāo),判斷出直線過橢圓的焦點(diǎn).然后判斷出,判斷出點(diǎn)的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點(diǎn),所以.直線過點(diǎn),直線過點(diǎn),由于,所以,所以點(diǎn)的軌跡是以為直徑的圓.由于點(diǎn)在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A本小題主要考查直線與直線的位置關(guān)系,考查動點(diǎn)軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.10.A【解析】
根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題11.C【解析】
根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時,,∴;當(dāng)時,,∴.故選:C.本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.12.B【解析】
根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.本題考查二項式定理的應(yīng)用,應(yīng)用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點(diǎn)A為橢圓上頂點(diǎn),則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因為|PA|=|AF1|,所以點(diǎn)A是線段PF1的中點(diǎn),又因為點(diǎn)O為線段F1F2的中點(diǎn),所以O(shè)A∥PF2,且|PF2|=2|OA|,因為點(diǎn)P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點(diǎn)A為橢圓上頂點(diǎn),所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.14.【解析】
根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運(yùn)算,考查了計算能力,屬于基礎(chǔ)題.15.【解析】
當(dāng)時,,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調(diào)性求解.【詳解】解:當(dāng)時,,則,,當(dāng)時,,,,,,(當(dāng)且僅當(dāng)時等號成立),,故答案為:.本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題.16.【解析】
由定義可知三點(diǎn)共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點(diǎn)到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點(diǎn)的直線方程為,則原點(diǎn)到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點(diǎn),且.易知,不與軸垂直.設(shè)其直線方程為,代入(1)得.設(shè),則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.18.(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點(diǎn),滿足直線與直線恰關(guān)于軸對稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點(diǎn).(依題意則由韋達(dá)定理可得,,.直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時,直線與直線恰關(guān)于軸對稱成立.特別地,當(dāng)直線為軸時,也符合題意.綜上所述,存在軸上的定點(diǎn),滿足直線與直線恰關(guān)于軸對稱.本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡單性質(zhì),熟練轉(zhuǎn)化題目條件,準(zhǔn)確計算是關(guān)鍵,是中檔題.19.(1);(2)證明見詳解,【解析】
(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數(shù)列是首項為,公比為的等比數(shù)列所以本題主要考查遞推公式以及之間的關(guān)系的應(yīng)用,考驗觀察能力以及分析能力,屬中檔題.20.(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當(dāng)時取等號.故,且當(dāng)時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點(diǎn)定位】基本不等式.21.(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識記公式,屬中檔題.22.(1)見解析(2)見解析【解析】
(1)連接AC、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工租賃機(jī)械合同范例
- 人力資源管理高級實驗?zāi)M習(xí)題及答案
- 炮竹購銷合同范例
- 臨建板房合同范例
- 求一油漆購買合同范例
- 庫存油缸出售合同范例
- 庫房托管合同范例
- 公司擔(dān)保租房合同范例
- 棋牌室合租合同范例
- 唐山職業(yè)技術(shù)學(xué)院《納米材料與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2022-2023學(xué)年廣東省東莞市人教PEP版四年級上冊期末考試英語試卷
- 反三違安全演講稿(17篇)
- 2024年大學(xué)計算機(jī)基礎(chǔ)考試題庫附參考答案(完整版)
- 《旅游財務(wù)管理》課件-3貨幣的時間價值
- 2024年長沙電力職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案解析
- “奔跑吧·少年”重慶市第三屆幼兒體育大會幼兒體適能活動規(guī)程
- 2024版國開電大??啤吨袊糯膶W(xué)(下)》在線形考(形考任務(wù)1至5)試題及答案 (二)
- Q GDW 11445-2015 國家電網(wǎng)公司管理信息系統(tǒng)安全基線要求
- 自我效能感研究綜述
- 醫(yī)療技術(shù)行業(yè)碳中和戰(zhàn)略與實踐
- 租金評估技術(shù)報告范文模版
評論
0/150
提交評論