版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
熱點(diǎn)7-3雙曲線(xiàn)及其應(yīng)用雙曲線(xiàn)及其應(yīng)用是高考數(shù)學(xué)的重點(diǎn)與難點(diǎn),在近幾年高考數(shù)學(xué)試卷中,雙曲線(xiàn)的相關(guān)題型幾乎年年都會(huì)考到,屬于熱點(diǎn)問(wèn)題。題型比較豐富,選擇題、填空題、解答題都出現(xiàn)過(guò),主要通過(guò)雙曲線(xiàn)的定義、方程及性質(zhì)考查數(shù)學(xué)運(yùn)算能力及轉(zhuǎn)化思想,難度中等偏難?!绢}型1雙曲線(xiàn)的定義及概念辨析】滿(mǎn)分技巧(1)在雙曲線(xiàn)定義中若去掉定義中的“絕對(duì)值”,常數(shù)SKIPIF1<0滿(mǎn)足約束條件:SKIPIF1<0(SKIPIF1<0),則動(dòng)點(diǎn)軌跡僅表示雙曲線(xiàn)中靠焦點(diǎn)SKIPIF1<0的一支;若SKIPIF1<0(SKIPIF1<0),則動(dòng)點(diǎn)軌跡僅表示雙曲線(xiàn)中靠焦點(diǎn)SKIPIF1<0的一支;(2)若常數(shù)SKIPIF1<0滿(mǎn)足約束條件:SKIPIF1<0,則動(dòng)點(diǎn)軌跡是以F1、F2為端點(diǎn)的兩條射線(xiàn)(包括端點(diǎn));(3)若常數(shù)SKIPIF1<0滿(mǎn)足約束條件:SKIPIF1<0,則動(dòng)點(diǎn)軌跡不存在;(4)若常數(shù)SKIPIF1<0,則動(dòng)點(diǎn)軌跡為線(xiàn)段F1F2的垂直平分線(xiàn)?!纠?】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知?jiǎng)狱c(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡是()A.射線(xiàn)B.直線(xiàn)C.橢圓D.雙曲線(xiàn)的一支【變式1-1】(2023·四川綿陽(yáng)·高三南山中學(xué)??茧A段練習(xí))雙曲線(xiàn)C:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的一條漸近線(xiàn)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是C的左右焦點(diǎn),且SKIPIF1<0,若雙曲線(xiàn)上一點(diǎn)M滿(mǎn)足SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0或SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式1-2】(2023·河北·模擬預(yù)測(cè))已知雙曲線(xiàn)SKIPIF1<0的上、下焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的一條漸近線(xiàn)過(guò)點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0.【變式1-3】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知圓SKIPIF1<0,圓SKIPIF1<0,圓SKIPIF1<0與圓SKIPIF1<0、圓SKIPIF1<0外切,則圓心SKIPIF1<0的軌跡方程為.【變式1-4】(2023·河北·石家莊一中校聯(lián)考模擬預(yù)測(cè))(多選)已知復(fù)數(shù)SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是()A.方程SKIPIF1<0表示的SKIPIF1<0在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的軌跡是圓B.方程SKIPIF1<0表示的SKIPIF1<0在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的軌跡是橢圓C.方程SKIPIF1<0表示的SKIPIF1<0在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的軌跡是雙曲線(xiàn)的一支D.方程SKIPIF1<0表示的SKIPIF1<0在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的軌跡是拋物線(xiàn)【題型2利用定義求距離和差最值】滿(mǎn)分技巧利用定義||PF1|-|PF2||=2a轉(zhuǎn)化或變形,借助三角形性質(zhì)及基本不等式求最值【例2】(2023·天津南開(kāi)·統(tǒng)考一模)已知拋物線(xiàn)SKIPIF1<0上一點(diǎn)SKIPIF1<0到準(zhǔn)線(xiàn)的距離為SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0的左焦點(diǎn),SKIPIF1<0是雙曲線(xiàn)右支上的一動(dòng)點(diǎn),則SKIPIF1<0的最小值為()A.12B.11C.10D.9【變式2-1】(2023·江西贛州·統(tǒng)考一模)已知點(diǎn)SKIPIF1<0,雙曲線(xiàn)SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線(xiàn)SKIPIF1<0的右支上運(yùn)動(dòng).當(dāng)SKIPIF1<0的周長(zhǎng)最小時(shí),SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2-2】(2023·四川南充·??寄M預(yù)測(cè))已知SKIPIF1<0是離心率為SKIPIF1<0的雙曲線(xiàn)SKIPIF1<0的右支上一點(diǎn),則SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離與SKIPIF1<0到點(diǎn)SKIPIF1<0的距離之和的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2-3】(2022·天津南開(kāi)·高三統(tǒng)考階段練習(xí))已知雙曲線(xiàn)SKIPIF1<0,點(diǎn)F是C的右焦點(diǎn),若點(diǎn)P為C左支上的動(dòng)點(diǎn),設(shè)點(diǎn)P到C的一條漸近線(xiàn)的距離為d,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.8D.10【變式2-4】(2023·山東泰安·統(tǒng)考二模)已知雙曲線(xiàn)SKIPIF1<0,其一條漸近線(xiàn)方程為SKIPIF1<0,右頂點(diǎn)為A,左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在其右支上,點(diǎn)SKIPIF1<0,三角形SKIPIF1<0的面積為SKIPIF1<0,則當(dāng)SKIPIF1<0取得最大值時(shí)點(diǎn)P的坐標(biāo)為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【題型3雙曲線(xiàn)標(biāo)準(zhǔn)方程的求解】滿(mǎn)分技巧1、由雙曲線(xiàn)標(biāo)準(zhǔn)方程求參數(shù)范圍(1)對(duì)于方程SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)表示雙曲線(xiàn);當(dāng)SKIPIF1<0時(shí)表示焦點(diǎn)在SKIPIF1<0軸上的雙曲線(xiàn);當(dāng)SKIPIF1<0時(shí)表示焦點(diǎn)在SKIPIF1<0軸上的雙曲線(xiàn).(2)對(duì)于方程SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)表示雙曲線(xiàn);當(dāng)SKIPIF1<0時(shí)表示焦點(diǎn)在SKIPIF1<0軸上的雙曲線(xiàn);當(dāng)SKIPIF1<0時(shí)表示焦點(diǎn)在SKIPIF1<0軸上的雙曲線(xiàn).(3)已知方程所代表的曲線(xiàn),求參數(shù)的取值范圍時(shí),應(yīng)先將方程轉(zhuǎn)化為所對(duì)應(yīng)曲線(xiàn)的標(biāo)準(zhǔn)方程的形式,再根據(jù)方程中參數(shù)取值范圍的要求,建立不等式(組)求解參數(shù)的取值范圍。2、待定系數(shù)法求雙曲線(xiàn)方程的五種類(lèi)型(1)與雙曲線(xiàn)eq\f(x2,a2)-eq\f(y2,b2)=1有公共漸近線(xiàn)的雙曲線(xiàn)方程可設(shè)為eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0);(2)若已知雙曲線(xiàn)的一條漸近線(xiàn)方程為y=eq\f(b,a)x或y=-eq\f(b,a)x,則可設(shè)雙曲線(xiàn)方程為eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0);(3)與雙曲線(xiàn)eq\f(x2,a2)-eq\f(y2,b2)=1共焦點(diǎn)的雙曲線(xiàn)方程可設(shè)為eq\f(x2,a2-k)-eq\f(y2,b2+k)=1(-b2<k<a2);(4)過(guò)兩個(gè)已知點(diǎn)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程可設(shè)為eq\f(x2,m)-eq\f(y2,n)=1(mn>0)或者eq\f(x2,m)+eq\f(y2,n)=1(mn<0);(5)與橢圓eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)有共同焦點(diǎn)的雙曲線(xiàn)方程可設(shè)為eq\f(x2,a2-λ)-eq\f(y2,λ-b2)=1(b2<λ<a2)【例3】(2023·全國(guó)·高三對(duì)口高考)與SKIPIF1<0有相同漸近線(xiàn),焦距SKIPIF1<0,則雙曲線(xiàn)標(biāo)準(zhǔn)方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式3-1】(2023·湖北荊州·高三松滋市第一中學(xué)??茧A段練習(xí))雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0.過(guò)SKIPIF1<0作其中一條漸近線(xiàn)的垂線(xiàn),垂足為SKIPIF1<0.已知SKIPIF1<0,直線(xiàn)SKIPIF1<0的斜率為SKIPIF1<0,則雙曲線(xiàn)的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式3-2】(2023·天津?qū)幒印じ呷J臺(tái)第一中學(xué)??计谀┮阎p曲線(xiàn)SKIPIF1<0的右焦點(diǎn)SKIPIF1<0與拋物線(xiàn)SKIPIF1<0的焦點(diǎn)重合,拋物線(xiàn)準(zhǔn)線(xiàn)與一條漸近線(xiàn)交于點(diǎn)SKIPIF1<0,則雙曲線(xiàn)的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式3-3】(2023·甘肅定西·統(tǒng)考模擬預(yù)測(cè))已知雙曲線(xiàn)C:SKIPIF1<0的漸近線(xiàn)方程為SKIPIF1<0,左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線(xiàn)l交雙曲線(xiàn)的右支于M,N兩點(diǎn),若SKIPIF1<0的周長(zhǎng)為36,則雙曲線(xiàn)C的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式3-4】(2023·四川樂(lè)山·統(tǒng)考三模)設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn).過(guò)SKIPIF1<0作圓SKIPIF1<0:SKIPIF1<0的一條切線(xiàn)SKIPIF1<0,切點(diǎn)為SKIPIF1<0,線(xiàn)段SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【題型4雙曲線(xiàn)的焦點(diǎn)三角形問(wèn)題】滿(mǎn)分技巧求雙曲線(xiàn)中的焦點(diǎn)三角形SKIPIF1<0面積的方法(1)=1\*GB3①根據(jù)雙曲線(xiàn)的定義求出SKIPIF1<0;=2\*GB3②利用余弦定理表示出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0之間滿(mǎn)足的關(guān)系式;=3\*GB3③通過(guò)配方,利用整體的思想求出SKIPIF1<0的值;=4\*GB3④利用公式SKIPIF1<0求得面積。(2)利用公式SKIPIF1<0求得面積;(3)若雙曲線(xiàn)中焦點(diǎn)三角形的頂角SKIPIF1<0,則面積SKIPIF1<0,結(jié)論適用于選擇或填空題?!纠?】(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))已知雙曲線(xiàn)的左?右焦點(diǎn)分別為SKIPIF1<0,過(guò)SKIPIF1<0的直線(xiàn)交雙曲線(xiàn)左支于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,若雙曲線(xiàn)的實(shí)軸長(zhǎng)為8,那么SKIPIF1<0的周長(zhǎng)是()A.5B.16C.21D.26【變式4-1】(2023·重慶·高三重慶八中校考期中)設(shè)雙曲線(xiàn)SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0的右支上,且SKIPIF1<0,則SKIPIF1<0的面積為()A.2B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式4-2】(2023·四川成都·高三??计谥校┰O(shè)SKIPIF1<0、SKIPIF1<0分別是雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0的左、右兩個(gè)焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上且SKIPIF1<0,則SKIPIF1<0的面積為()A.5B.10C.SKIPIF1<0D.20【變式4-3】(2023·廣東湛江·高三統(tǒng)考階段練習(xí))已知雙曲線(xiàn)SKIPIF1<0的一條漸近線(xiàn)方程是SKIPIF1<0分別為雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn),過(guò)點(diǎn)SKIPIF1<0且垂直于SKIPIF1<0軸的垂線(xiàn)在SKIPIF1<0軸上方交雙曲線(xiàn)SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式4-4】(2023·云南昆明·高三昆明一中??茧A段練習(xí))已知雙曲線(xiàn)SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線(xiàn)與雙曲線(xiàn)SKIPIF1<0的左支交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的內(nèi)切圓周長(zhǎng)為.【題型5求雙曲線(xiàn)的離心率與范圍】滿(mǎn)分技巧1、求雙曲線(xiàn)的離心率或其范圍的方法(1)求a,b,c的值,由eq\f(c2,a2)=eq\f(a2+b2,a2)=1+eq\f(b2,a2)直接求e.(2)列出含有a,b,c的齊次方程(或不等式),借助b2=c2-a2消去b,然后轉(zhuǎn)化成關(guān)于e的方程(或不等式)求解,注意e的取值范圍.(3)因?yàn)殡x心率是比值,所以可以利用特殊值法.例如,令a=1,求出相應(yīng)c的值,進(jìn)而求出離心率,能有效簡(jiǎn)化計(jì)算.(4)通過(guò)特殊位置求出離心率.2、雙曲線(xiàn)eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的漸近線(xiàn)的斜率k與離心率e的關(guān)系:當(dāng)k>0時(shí),k=eq\f(b,a)=eq\f(\r(c2-a2),a)=eq\r(\f(c2,a2)-1)=eq\r(e2-1);當(dāng)k<0時(shí),k=-eq\f(b,a)=-eq\r(e2-1).【例5】(2023·天津北辰·高三統(tǒng)考期中)雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓與SKIPIF1<0的左支的一個(gè)公共點(diǎn)為SKIPIF1<0,若原點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離等于實(shí)半軸的長(zhǎng),則雙曲線(xiàn)SKIPIF1<0的離心率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式5-1】(2023·全國(guó)·模擬預(yù)測(cè))雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是其右支上一點(diǎn).若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則雙曲線(xiàn)SKIPIF1<0的離心率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式5-2】(2023·江蘇蘇州·高三統(tǒng)考階段練習(xí))已知雙曲線(xiàn)SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0為坐標(biāo)原點(diǎn),圓SKIPIF1<0交雙曲線(xiàn)SKIPIF1<0的左支于點(diǎn)SKIPIF1<0,直線(xiàn)SKIPIF1<0交雙曲線(xiàn)SKIPIF1<0的右支于點(diǎn)SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0的中點(diǎn),則雙曲線(xiàn)SKIPIF1<0的離心率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式5-3】(2023·全國(guó)·模擬預(yù)測(cè))已知雙曲線(xiàn)C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,P為雙曲線(xiàn)C的右支上一點(diǎn),且SKIPIF1<0,SKIPIF1<0,則雙曲線(xiàn)C的離心率的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式5-4】(2023·河南洛陽(yáng)·高三洛陽(yáng)市第八中學(xué)??奸_(kāi)學(xué)考試)已知雙曲線(xiàn)SKIPIF1<0的上下焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0的下支上,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0的一條漸近線(xiàn)的垂線(xiàn),垂足為SKIPIF1<0,若SKIPIF1<0恒成立,則SKIPIF1<0的離心率的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【題型6雙曲線(xiàn)的中點(diǎn)弦問(wèn)題】滿(mǎn)分技巧解決中點(diǎn)弦問(wèn)題的兩種方法:1、根與系數(shù)關(guān)系法:聯(lián)立方程,消元,利用根與系數(shù)的關(guān)系進(jìn)行舍而不求,從而簡(jiǎn)化運(yùn)算;2、點(diǎn)差法:利用交點(diǎn)在曲線(xiàn)上,坐標(biāo)滿(mǎn)足方程,將交點(diǎn)坐標(biāo)分別代入雙曲線(xiàn)方程,然后作差,構(gòu)造出中點(diǎn)坐標(biāo)和斜率的關(guān)系,具體如下:直線(xiàn)(不平行于軸)過(guò)雙曲線(xiàn)SKIPIF1<0上兩點(diǎn)、,其中中點(diǎn)為,則有SKIPIF1<0.證明:設(shè)、,則有SKIPIF1<0,上式減下式得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【例6】(2023·陜西寶雞·校聯(lián)考模擬預(yù)測(cè))已知雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線(xiàn)交雙曲線(xiàn)E于A、B兩點(diǎn).若SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,則E的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式6-1】(2024·陜西寶雞·校考一模)設(shè)SKIPIF1<0,SKIPIF1<0為雙曲線(xiàn)SKIPIF1<0上兩點(diǎn),下列四個(gè)點(diǎn)中,可為線(xiàn)段SKIPIF1<0中點(diǎn)的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式6-2】(2023·陜西渭南·統(tǒng)考二模)已知直線(xiàn)SKIPIF1<0過(guò)雙曲線(xiàn)SKIPIF1<0的左焦點(diǎn)SKIPIF1<0,且與SKIPIF1<0的左?右兩支分別交于SKIPIF1<0兩點(diǎn),設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),若SKIPIF1<0是以SKIPIF1<0為底邊的等腰三角形,則直線(xiàn)SKIPIF1<0的斜率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式6-3】(2023·上?!じ呷邔氈袑W(xué)校考二模)不與SKIPIF1<0軸重合的直線(xiàn)SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0上存在兩點(diǎn)A,B關(guān)于SKIPIF1<0對(duì)稱(chēng),AB中點(diǎn)M的橫坐標(biāo)為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為.【變式6-4】(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))已知雙曲線(xiàn)SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,虛軸的上端點(diǎn)為SKIPIF1<0是SKIPIF1<0上的兩點(diǎn),SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),直線(xiàn)SKIPIF1<0的斜率為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的兩條浙近線(xiàn)的斜率之積為.【題型7直線(xiàn)與雙曲線(xiàn)相交弦長(zhǎng)】滿(mǎn)分技巧求弦長(zhǎng)的兩種方法:(1)交點(diǎn)法:將直線(xiàn)的方程與雙曲線(xiàn)的方程聯(lián)立,求出兩交點(diǎn)的坐標(biāo),然后運(yùn)用兩點(diǎn)間的距離公式來(lái)求.(2)根與系數(shù)的關(guān)系法:如果直線(xiàn)的斜率為k,被雙曲線(xiàn)截得弦AB兩端點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),則弦長(zhǎng)公式為:【例7】(2023·山東臨沂·統(tǒng)考一模)已知雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,過(guò)SKIPIF1<0的直線(xiàn)與SKIPIF1<0的左、右兩支分別交于點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的離心率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式7-1】(2023·湖南益陽(yáng)·安化縣第二中學(xué)??既#┮阎p曲線(xiàn)SKIPIF1<0:SKIPIF1<0,若直線(xiàn)SKIPIF1<0的傾斜角為60°,且與雙曲線(xiàn)C的右支交于M,N兩點(diǎn),與x軸交于點(diǎn)P,若SKIPIF1<0,則點(diǎn)P的坐標(biāo)為.【變式7-2】(2023·江蘇蘇州·校聯(lián)考三模)已知雙曲線(xiàn)SKIPIF1<0,過(guò)其右焦點(diǎn)SKIPIF1<0的直線(xiàn)SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),已知SKIPIF1<0,若這樣的直線(xiàn)SKIPIF1<0有SKIPIF1<0條,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【變式7-3】(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.過(guò)SKIPIF1<0的直線(xiàn)l交C的右支于M,N兩點(diǎn),且當(dāng)l垂直于x軸時(shí),l與C的兩條漸近線(xiàn)所圍成的三角形的面積為4.(1)求C的方程;(2)證明:SKIPIF1<0,求SKIPIF1<0.【變式7-4】(2023·山東青島·高三統(tǒng)考開(kāi)學(xué)考試)已知SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0,直線(xiàn)SKIPIF1<0,SKIPIF1<0的斜率之積為4,記動(dòng)點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)直線(xiàn)SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),線(xiàn)段SKIPIF1<0中點(diǎn)SKIPIF1<0為第一象限,且縱坐標(biāo)為SKIPIF1<0,求SKIPIF1<0的面積.【題型8直線(xiàn)與雙曲線(xiàn)綜合問(wèn)題】【例8】(2023·江蘇南通·高三江蘇省如皋中學(xué)??茧A段練習(xí))如圖,雙曲線(xiàn)C:SKIPIF1<0-SKIPIF1<0=1SKIPIF1<0的中心O為坐標(biāo)原點(diǎn),離心率SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線(xiàn)C上.(1)求雙曲線(xiàn)C的標(biāo)準(zhǔn)方程;(2)若直線(xiàn)l與雙曲線(xiàn)C交于P,Q兩點(diǎn),且SKIPIF1<0,求SKIPIF1<0+SKIPIF1<0的值.【變式8-1】(2023·湖北·高三天門(mén)中學(xué)校聯(lián)考期中)已知雙曲線(xiàn)C:SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過(guò)F且斜率為SKIPIF1<0的直線(xiàn)SKIPIF1<0交C于A,B兩點(diǎn),且當(dāng)SKIPIF1<0時(shí),A的橫坐標(biāo)為3.(1)求C的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)A且平行于x軸的直線(xiàn)與直線(xiàn)SKIPIF1<0交于點(diǎn)D,P為線(xiàn)段SKIPIF1<0的中點(diǎn),直線(xiàn)SKIPIF1<0交SKIPIF1<0于點(diǎn)Q,證明:SKIPIF1<0.【變式8-2】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知雙曲線(xiàn)SKIPIF1<0SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的左頂點(diǎn),SKIPIF1<0的離心率為2.設(shè)過(guò)SKIPIF1<0的直線(xiàn)SKIPIF1<0交SKIPIF1<0的右支于SKIPIF1<0、SKIPIF1<0兩點(diǎn),其中SKIPIF1<0在第一象限.(1)求SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)是否存在常數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立?若存在,求出SKIPIF1<0的值;否則,說(shuō)明理由.【變式8-3】(2023·廣東廣州·高三統(tǒng)考階段練習(xí))已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)SKIPIF1<0到SKIPIF1<0的距離與它到直線(xiàn)SKIPIF1<0的距離之比為SKIPIF1<0,SKIPIF1<0的軌跡為曲線(xiàn)SKIPIF1<0.(1)求曲線(xiàn)SKIPIF1<0的方程;(2)過(guò)點(diǎn)SKIPIF1<0作直線(xiàn)SKIPIF1<0與曲線(xiàn)SKIPIF1<0交于不同的兩點(diǎn)SKIPIF1<0、SKIPIF1<0(SKIPIF1<0、SKIPIF1<0在SKIPIF1<0軸右側(cè)),在線(xiàn)段SKIPIF1<0上取異于點(diǎn)SKIPIF1<0、SKIPIF1<0的點(diǎn)SKIPIF1<0,且滿(mǎn)足SKIPIF1<0,證明:點(diǎn)SKIPIF1<0恒在一條直線(xiàn)上.【變式8-4】(2023·云南大理·統(tǒng)考一模)已知雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0,其漸近線(xiàn)方程為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上.(1)求雙曲線(xiàn)SKIPIF1<0的方程;(2)過(guò)點(diǎn)SKIPIF1<0的兩條直線(xiàn)AP,AQ分別與雙曲線(xiàn)SKIPIF1<0交于P,Q兩點(diǎn)(不與點(diǎn)A重合),且兩條直線(xiàn)的斜率之和為1,求證:直線(xiàn)PQ過(guò)定點(diǎn).(建議用時(shí):60分鐘)圓錐曲線(xiàn)練習(xí)1.(2023·陜西漢中·統(tǒng)考一模)已知雙曲線(xiàn)SKIPIF1<0的一條漸近線(xiàn)的斜率為2,則SKIPIF1<0()A.-4B.4C.SKIPIF1<0D.SKIPIF1<02.(2023·全國(guó)·模擬預(yù)測(cè))已知雙曲線(xiàn)SKIPIF1<0的離心率為SKIPIF1<0,且雙曲線(xiàn)SKIPIF1<0上的點(diǎn)到焦點(diǎn)的最近距離為2,則雙曲線(xiàn)SKIPIF1<0的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<03.(2023·河南·高三校聯(lián)考階段練習(xí))已知雙曲線(xiàn)SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,過(guò)原點(diǎn)SKIPIF1<0的直線(xiàn)與SKIPIF1<0的右支交于點(diǎn)SKIPIF1<0,若SKIPIF1<0為等腰三角形,則點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為()A.SKIPIF1<0B.SKIPIF1<0C.3D.54.(2023·廣東佛山·統(tǒng)考一模)已知雙曲線(xiàn)C:SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,O為坐標(biāo)原點(diǎn),點(diǎn)P是雙曲線(xiàn)C上的一點(diǎn),SKIPIF1<0,且SKIPIF1<0的面積為4,則實(shí)數(shù)SKIPIF1<0()A.SKIPIF1<0B.2C.SKIPIF1<0D.45.(2023·山西臨汾·??寄M預(yù)測(cè))已知雙曲線(xiàn)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的離心率為SKIPIF1<0,圓SKIPIF1<0與C的一條漸近線(xiàn)相交,且弦長(zhǎng)不小于4,則a的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.(2023·全國(guó)·模擬預(yù)測(cè))已知直線(xiàn)SKIPIF1<0過(guò)雙曲線(xiàn)SKIPIF1<0的右焦點(diǎn)SKIPIF1<0,且與雙曲線(xiàn)右支交于SKIPIF1<0,SKIPIF1<0兩點(diǎn).若SKIPIF1<0,則雙曲線(xiàn)SKIPIF1<0的離心率為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.(2023·安徽滁州·??家荒#┮阎獧E圓SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0有共同的焦點(diǎn)SKIPIF1<0,SKIPIF1<0,離心率分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0在第一象限的公共點(diǎn),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.(2023·安徽·高三懷遠(yuǎn)第一中學(xué)校聯(lián)考階段練習(xí))(多選)在平面直角坐標(biāo)系xOy中,A、B兩點(diǎn)的坐標(biāo)分別為SKIPIF1<0、SKIPIF1<0,則下列結(jié)論正確的是()A.若SKIPIF1<0,則點(diǎn)P的軌跡為直B.若SKIPIF1<0,則點(diǎn)P的軌跡為圓C.若SKIPIF1<0,則點(diǎn)P的軌跡為橢圓D.若SKIPIF1<0,則點(diǎn)P的軌跡為雙曲線(xiàn)9.(2023·廣東廣州·統(tǒng)考模擬預(yù)測(cè))(多選)已知雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn)別為SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線(xiàn)l與雙曲線(xiàn)SKIPIF1<0的右支相交于SKIPIF1<0兩點(diǎn),則()A.若SKIPIF1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025設(shè)備購(gòu)銷(xiāo)買(mǎi)賣(mài)合同范本
- 2025浙江勞動(dòng)合同書(shū)
- 事故反思報(bào)告范文
- 上海視覺(jué)藝術(shù)學(xué)院《路由與交換技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海視覺(jué)藝術(shù)學(xué)院《互聯(lián)網(wǎng)開(kāi)發(fā)Web框架與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025酒店裝修合同書(shū)協(xié)議
- 課題申報(bào)書(shū):高質(zhì)量教育視域下科學(xué)本質(zhì)理解轉(zhuǎn)化的實(shí)證研究
- 課題申報(bào)書(shū):高校思想政治教育的信任問(wèn)題及其紓解研究
- 2023-2024屆高考作文備考導(dǎo)向創(chuàng)新
- 25少年閏土 公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 山東省濟(jì)南市濟(jì)陽(yáng)區(qū)三校聯(lián)考2024-2025學(xué)年八年級(jí)上學(xué)期12月月考語(yǔ)文試題
- 糖尿病酮酸癥中毒
- Unit 6 Food Lesson 1(說(shuō)課稿)-2024-2025學(xué)年人教精通版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 東北師大附屬中學(xué)2025屆高一物理第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- HSE(健康、安全與環(huán)境)計(jì)劃書(shū)
- 金蛇納瑞2025年公司年會(huì)通知模板
- 部編版小學(xué)五年級(jí)上冊(cè)道德與法治單元檢測(cè)試卷含答案(全冊(cè))
- 有限空間應(yīng)急預(yù)案演練方案及過(guò)程
- GB/T 16288-2024塑料制品的標(biāo)志
- 2024-2030年農(nóng)產(chǎn)品物流行業(yè)市場(chǎng)深度分析及競(jìng)爭(zhēng)格局與投資價(jià)值研究報(bào)告
- 某某市“鄉(xiāng)村振興”行動(dòng)項(xiàng)目-可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論