




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
鐵嶺市重點中學2024屆中考聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.2.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.3.已知關于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣34.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y35.如圖所示,將含有30°角的三角板的直角頂點放在相互平行的兩條直線其中一條上,若∠1=35°,則∠2的度數(shù)為()A.10° B.20° C.25° D.30°6.如圖,點P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變7.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)8.現(xiàn)有三張背面完全相同的卡片,正面分別標有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.9.一個兩位數(shù),它的十位數(shù)字是3,個位數(shù)字是拋擲一枚質(zhì)地均勻的骰子(六個面分別標有數(shù)字1﹣6)朝上一面的數(shù)字,任意拋擲這枚骰子一次,得到的兩位數(shù)是3的倍數(shù)的概率等于()A. B. C. D.10.已知,則的值是A.60 B.64 C.66 D.72二、填空題(本大題共6個小題,每小題3分,共18分)11.現(xiàn)有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.12.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍為__________.13.如圖,如果四邊形ABCD中,AD=BC=6,點E、F、G分別是AB、BD、AC的中點,那么△EGF面積的最大值為_____.14.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉(zhuǎn)一周.當△DCE一邊與AB平行時,∠ECB的度數(shù)為_________________________.15.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____16.數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復原的原則》《吳文俊與中國數(shù)學》和《古代世界數(shù)學泰斗劉徽》)請根據(jù)上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.三、解答題(共8題,共72分)17.(8分)如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.18.(8分)一次函數(shù)y=34x的圖象如圖所示,它與二次函數(shù)y=ax2(1)求點C的坐標;(2)設二次函數(shù)圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關系式.19.(8分)我市某中學藝術(shù)節(jié)期間,向全校學生征集書畫作品.九年級美術(shù)王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學??偨Y(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.20.(8分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.21.(8分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為a、b.隊別平均分中位數(shù)方差合格率優(yōu)秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優(yōu)秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.22.(10分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?23.(12分)在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B作⊙O的切線BF交CD的延長線于點F.(I)如圖①,若∠F=50°,求∠BGF的大小;(II)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大?。?4.已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣3x+b與拋物線的另一個交點為D.(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒23
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:左視圖如圖所示:故選C.2、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.3、B【解析】
把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.4、D【解析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點所在的象限,再根據(jù)函數(shù)的增減性即可得出結(jié)論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點所在的象限是解答此題的關鍵.5、C【解析】分析:如圖,延長AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故選C.6、D【解析】
作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.7、D【解析】
過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應用,熟練掌握相關知識點是解答的關鍵.8、D【解析】
先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.9、B【解析】
直接得出兩位數(shù)是3的倍數(shù)的個數(shù),再利用概率公式求出答案.【詳解】∵一枚質(zhì)地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,十位數(shù)為3,則兩位數(shù)是3的倍數(shù)的個數(shù)為2.∴得到的兩位數(shù)是3的倍數(shù)的概率為:=.故答案選:B.【點睛】本題考查了概率的知識點,解題的關鍵是根據(jù)題意找出兩位數(shù)是3的倍數(shù)的個數(shù)再運用概率公式解答即可.10、A【解析】
將代入原式,計算可得.【詳解】解:當時,原式,故選A.【點睛】本題主要考查分式的加減法,解題的關鍵是熟練掌握完全平方公式.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
設小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點睛】本題考查了二元一次方程組的應用.12、.【解析】
根據(jù)判別式的意義得到,然后解不等式即可.【詳解】解:關于的一元二次方程有兩個不相等的實數(shù)根,,解得:,故答案為:.【點睛】此題考查了一元二次方程的根的判別式:當,方程有兩個不相等的實數(shù)根;當,方程有兩個相等的實數(shù)根;當,方程沒有實數(shù)根.13、4.1.【解析】
取CD的值中點M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,由此可得結(jié)論.【詳解】解:取CD的值中點M,連接GM,F(xiàn)M.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.【點睛】本題主要考查菱形的判定和性質(zhì),利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關鍵.14、15°、30°、60°、120°、150°、165°【解析】分析:根據(jù)CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據(jù)每種情況分別進行計算得出答案,每種情況都會出現(xiàn)銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質(zhì)與判定,屬于中等難度的題型.解決這個問題的關鍵就是根據(jù)題意得出圖形,然后分兩種情況得出角的度數(shù).15、【解析】
分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關鍵在于利用好折疊的性質(zhì)16、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質(zhì):矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點睛】本題考查矩形的性質(zhì),解題的關鍵是靈活運用矩形的對角線把矩形分成面積相等的兩部分這個性質(zhì),屬于中考??碱}型.三、解答題(共8題,共72分)17、樹高為5.5米【解析】
根據(jù)兩角相等的兩個三角形相似,可得△DEF∽△DCB,利用相似三角形的對邊成比例,可得,代入數(shù)據(jù)計算即得BC的長,由AB=AC+BC,即可求出樹高.【詳解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:樹高為5.5米.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.18、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數(shù)y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據(jù)點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據(jù)S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據(jù)勾股定理用m表示出AC的長,根據(jù)△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數(shù)表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數(shù)圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數(shù)與一次函數(shù)的綜合題.19、(1)抽樣調(diào)查;12;3;(2)60;(3).【解析】試題分析:(1)根據(jù)只抽取了4個班可知是抽樣調(diào)查,根據(jù)C在扇形圖中的角度求出所占的份數(shù),再根據(jù)C的人數(shù)是5,列式進行計算即可求出作品的件數(shù),然后減去A、C、D的件數(shù)即為B的件數(shù);(2)求出平均每一個班的作品件數(shù),然后乘以班級數(shù)14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據(jù)概率公式列式進行計算即可得解.試題解析:(1)抽樣調(diào)查,所調(diào)查的4個班征集到作品數(shù)為:5÷=12件,B作品的件數(shù)為:12﹣2﹣5﹣2=3件,故答案為抽樣調(diào)查;12;3;把圖2補充完整如下:(2)王老師所調(diào)查的四個班平均每個班征集作品=12÷4=3(件),所以,估計全年級征集到參展作品:3×14=42(件);(3)畫樹狀圖如下:列表如下:共有20種機會均等的結(jié)果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點:1.條形統(tǒng)計圖;2.用樣本估計總體;3.扇形統(tǒng)計圖;4.列表法與樹狀圖法;5.圖表型.20、證明見試題解析.【解析】試題分析:首先根據(jù)∠ACD=∠BCE得出∠ACB=∠DCE,結(jié)合已知條件利用SAS判定△ABC和△DEC全等,從而得出答案.試題解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考點:三角形全等的證明21、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級隊成績好的理由即可.試題解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級成績?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級平均分高于七年級,方差小于七年級,成績比較穩(wěn)定,故八年級隊比七年級隊成績好.考點:1.條形統(tǒng)計圖;2.統(tǒng)計表;3.加權(quán)平均數(shù);4.中位數(shù);5.方差.22、(1)見解析;(2)A;(3)800人.【解析】
(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應的百分比即可求解.【詳解】解:(1)∵被調(diào)查的學生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.23、(I)65°;(II)72°【解析】
(I)如圖①,連接OB,先利用切線的性質(zhì)得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內(nèi)角和可計算出∠AOB=130°,然后根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和計算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內(nèi)角和定理計算∠BGF的度數(shù);(II)如圖②,連接OB,BO的延長線交AC于H,利用切線的性質(zhì)得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計算出∠OAH=54°,然后根據(jù)圓周角定理得到∠BDG的度數(shù).【詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長線交AC于H,∵BF為⊙O的切線,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省丹東市五校協(xié)作體2025屆高三12月考-化學試題(含答案)
- 初中數(shù)學第四章 三角形單元復習題2024-2025學年北師大版七年級數(shù)學下冊
- 2《合理利用網(wǎng)絡》表格式公開課一等獎創(chuàng)新教學設計-3
- 藏族民間舞蹈的文化特征
- 化工安全作業(yè)票培訓講座
- 臨時工勞務派遣合同模板
- 員工服務合同協(xié)議書
- 人防工程專業(yè)分包合同
- 2025耕地流轉(zhuǎn)合同范本
- 2025年勞動合同書范本
- 蜜雪冰城工商大學店開店方案設計
- 毛澤東詩詞賞析
- 《我國中小企業(yè)融資的現(xiàn)狀、問題及完善對策研究-S高科技公司為例》12000字(論文)
- 灼口綜合征護理
- 【碳足跡報告】山東金拓熱能科技有限公司產(chǎn)品碳足跡報告
- 小孩進入廠區(qū)安全免責協(xié)議書(2篇)
- 讀書分享讀書交流會《基督山伯爵》課件
- VTE評分量表解讀 課件2024.8
- 2023年12月英語六級真題及答案-第3套
- 《文化學概論》第三章-文化的起源及其發(fā)展-38
- 2024年四川省成都市中考地理+生物試卷真題(含答案解析)
評論
0/150
提交評論