版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
初中定理大全
初中數(shù)學(xué)點(diǎn)、線、角的定理
點(diǎn)的定理:過(guò)兩點(diǎn)有且只有一條直線
點(diǎn)的定理:兩點(diǎn)之間線段最短
角的定理:同角或等角的補(bǔ)角相等
角的定理:同角或等角的余角相等
直線定理:過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
直線定理:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
初中數(shù)學(xué)幾何平行定理
平行定理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:
同位角相等,兩直線平行
-1-
內(nèi)錯(cuò)角相等,兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行
兩直線平行推論:
兩直線平行,同位角相等
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,同旁內(nèi)角互補(bǔ)
初中數(shù)學(xué)定理:三角形內(nèi)角定理
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1:直角三角形的兩個(gè)銳角互余
推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
-2-
初中數(shù)學(xué)定理:全等三角形判定定理
定理:全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
邊角邊定理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
邊邊邊定理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
初中數(shù)學(xué)定理:角的平分線定理
定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
初中數(shù)學(xué)定理:等腰三角形性質(zhì)定理
等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
-3-
推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60°
等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等
角對(duì)等邊)
推論1:三個(gè)角都相等的三角形是等邊三角形
推論2有一個(gè)角等于60。的等腰三角形是等邊三角形
初中數(shù)學(xué)公式定理:對(duì)稱(chēng)定理
定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
定理1:關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形
定理2:如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
定理3:兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸
-4-
上
逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線
對(duì)稱(chēng)
初中數(shù)學(xué)定理:直角三角形定理
定理:在直角三角形中,如果一個(gè)銳角等于30。那么它所對(duì)的直角邊等于斜邊的一半
判定定理:直角三角形斜邊上的中線等于斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即aA2+bA2=cA2
勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有關(guān)系aA2+bA2=cA2,那么這個(gè)三角
形是直角三角形
初中數(shù)學(xué)公式定理:多邊形內(nèi)角和定理
定理:四邊形的內(nèi)角和等于360°
四邊形的外角和等于360°
多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n-2)xl80°
推論:任意多邊的外角和等于360°
-5-
初中數(shù)學(xué)公式定理:平行四邊形定理
平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等
平行四邊形性質(zhì)定理2:平行四邊形的對(duì)邊相等
推論:夾在兩條平行線間的平行線段相等
平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分
平行四邊形判定定理1:兩組對(duì)角分別相等的四邊形是平行四邊形
平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形
平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形
平行四邊形判定定理4:一組對(duì)邊平行相等的四邊形是平行四邊形
初中數(shù)學(xué)公式定理:矩形的定理
矩形性質(zhì)定理1:矩形的四個(gè)角都是直角
矩形性質(zhì)定理2:矩形的對(duì)角線相等
矩形判定定理1:有三個(gè)角是直角的四邊形是矩形
-6-
矩形判定定理2:對(duì)角線相等的平行四邊形是矩形
初中數(shù)學(xué)公式定理:菱形定理
菱形性質(zhì)定理1:菱形的四條邊都相等
菱形性質(zhì)定理2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
菱形面積=對(duì)角線乘積的一半,即S=(axb)+2
菱形判定定理1:四邊都相等的四邊形是菱形
菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形
初中數(shù)學(xué)公式定理:正方形定理
正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等
正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)
初中數(shù)學(xué)定理公式:中心對(duì)稱(chēng)定理
定理1:關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的
定理2:關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分
-7-
逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)
于這一點(diǎn)對(duì)稱(chēng)
初中數(shù)學(xué)定理:等腰梯形性質(zhì)定理
等腰梯形性質(zhì)定理:
L等腰梯形在同一底上的兩個(gè)角相等
2.等腰梯形的兩條對(duì)角線相等
等腰梯形判定定理:
1.在同一底上的兩個(gè)角相等的梯形是等腰梯形
2.對(duì)角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的簸相等,那么在其他直線上截
得的線段也相等
推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
初中數(shù)學(xué)公式定理:中位線定理
-8-
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)+2S=Lxh
初中數(shù)學(xué)公式定理:相似三角形定理
相似三角形定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的
三角形與原三角形相似
相似三角形判定定理1:兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
判定定理2:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
判定定理3:三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
相似直角三角形定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊
和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
性質(zhì)定理1:相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
性質(zhì)定理2:相似三角形周長(zhǎng)的比等于相似比
性質(zhì)定理3:相似三角形面積的比等于相似比的平方
-9-
初中數(shù)學(xué)公式定理:三角函數(shù)定理
任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
初中數(shù)學(xué)圓的定理
12不共線的三點(diǎn)確定一個(gè)圓
經(jīng)過(guò)一點(diǎn)可以作無(wú)數(shù)個(gè)圓
經(jīng)過(guò)兩點(diǎn)也可以作無(wú)數(shù)個(gè)圓,且圓心都在連結(jié)這兩點(diǎn)的線段的垂直平分線上
定理:過(guò)不共線的三個(gè)點(diǎn),可以作且只可以作一個(gè)圓
推論:三角形的三邊垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)就是三角形的外心
三角形的三條高線的交點(diǎn)叫三角形的垂心
1.3垂徑定理
圓是中心對(duì)稱(chēng)圖形;圓心是它的對(duì)稱(chēng)中心
圓是周對(duì)稱(chēng)圖形,任一條通過(guò)圓心的直線都是它的對(duì)稱(chēng)軸
-10-
定理:垂直于弦的直徑平分這條弦,并且評(píng)分弦所對(duì)的兩條弧
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對(duì)的兩條弧
推論2:弦的垂直平分弦經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
推論3:平分弦所對(duì)的一條弧的直徑,垂直評(píng)分弦,并且平分弦所對(duì)的另一條弧
1.4弧、弦和弦心距
定理:在同圓或等圓中,相等的弧所對(duì)的弦相等,所對(duì)的弦的弦心距相等
二圓與直線的位置關(guān)系
2.1圓與直線的位置關(guān)系
如果一條直線和一個(gè)圓沒(méi)有公共點(diǎn),我們就說(shuō)這條直線和這個(gè)圓相離
如果一條直線和一個(gè)圓只有一個(gè)公共點(diǎn),我們就說(shuō)這條直線和這個(gè)圓相切,這條直線叫做圓
的切線,這個(gè)公共點(diǎn)叫做它們的切點(diǎn)
定理:經(jīng)過(guò)圓的半徑外端點(diǎn),并且垂直于這條半徑的直線是這個(gè)圓的切線
定理:圓的切線垂直經(jīng)過(guò)切點(diǎn)的半徑
推論1:經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
-11-
推論2:經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
如果一條直線和一個(gè)圓有兩個(gè)公共點(diǎn),我們就說(shuō),這條直線和這個(gè)圓相交,這條直線叫這個(gè)
圓的割線,這兩個(gè)公共點(diǎn)叫做它們的交點(diǎn)
直線和圓的位置關(guān)系只能由相離、相切和相交三種
2.2三角形的內(nèi)切圓
如果一個(gè)多邊形的各邊所在的直線,都和一個(gè)圓相切,這個(gè)多邊形叫做圓的外切多邊形,這
個(gè)圓叫做多邊形的內(nèi)切圓
定理:三角形的三個(gè)內(nèi)角平分線交于一點(diǎn),這點(diǎn)是三角形的內(nèi)心
三角形一內(nèi)角評(píng)分線和其余兩內(nèi)角的外角評(píng)分線交于一點(diǎn),這一點(diǎn)叫做三角形的旁心。以旁
心為圓心可以作一個(gè)圓和一邊及其他兩邊的延長(zhǎng)線相切,所作的圓叫做三角形的旁切圓
2.3切線長(zhǎng)定理
定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線
的夾角
2.4圓的外切四邊形
定理:圓的外切四邊形的兩組對(duì)邊的和相等
-12-
定理:如果四邊形兩組對(duì)邊的和相等,那么它必有內(nèi)切圓
三圓與圓的位置關(guān)系
3.1兩圓的位置關(guān)系
在平面內(nèi),不重合的兩圓。它們的位置關(guān)系
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《肺特殊CT征象》課件
- 《電能計(jì)量技術(shù)》課件
- 《家具的加工工藝》課件
- 第19課 七七事變與全民族抗戰(zhàn)(解析版)
- 《衛(wèi)生經(jīng)濟(jì)管理系統(tǒng)》課件
- 寒假自習(xí)課 25春初中道德與法治八年級(jí)下冊(cè)教學(xué)課件 第一單元 大單元整體設(shè)計(jì)
- 銀行宣傳推廣總結(jié)
- 《皮膚生理學(xué)》課件
- 素描藝術(shù)探索
- 風(fēng)險(xiǎn)監(jiān)測(cè)與追蹤培訓(xùn)
- 醫(yī)院院長(zhǎng)年終工作總結(jié)報(bào)告精編ppt
- 大連市小升初手冊(cè)
- 《自然辯證法》課后習(xí)題答案自然辯證法課后題答案
- 造價(jià)咨詢結(jié)算審核服務(wù)方案
- 中國(guó)人民財(cái)產(chǎn)保險(xiǎn)股份有限公司機(jī)動(dòng)車(chē)綜合商業(yè)保險(xiǎn)條款
- 燃?xì)夤こ瘫O(jiān)理實(shí)施細(xì)則(通用版)
- E車(chē)E拍行車(chē)記錄儀說(shuō)明書(shū) - 圖文-
- 人才梯隊(duì)-繼任計(jì)劃-建設(shè)方案(珍貴)
- 《健身氣功》(選修)教學(xué)大綱
- 王家?guī)r隧道工程地質(zhì)勘察報(bào)告(總結(jié))
- 《昆明的雨》優(yōu)質(zhì)課一等獎(jiǎng)(課堂PPT)
評(píng)論
0/150
提交評(píng)論