版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第19頁/共21頁江蘇省2024-2024學(xué)年第一學(xué)期9月份質(zhì)量檢測高三數(shù)學(xué)試卷滿分:150分考試時(shí)間:120分鐘一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合,,則等于()A. B. C. D.【答案】D【解析】【分析】利用指數(shù)函數(shù)的單調(diào)性求出指數(shù)函數(shù)的值域進(jìn)而得出集合,依據(jù)二次根式的意義求出集合,利用并集的定義和運(yùn)算干脆計(jì)算即可.【詳解】..因此.故選:D2.在復(fù)平面內(nèi),復(fù)數(shù),則的虛部是()A. B.1 C.2 D.【答案】A【解析】【分析】利用復(fù)數(shù)的除法解題即可.【詳解】由題,所以的虛部為,故選:A3.已知等差數(shù)列的公差為1,為其前項(xiàng)和,若,則()A. B.1 C. D.2【答案】D【解析】【分析】先求得,然后求得.【詳解】依題意.故選:D4.高三年級三個(gè)班到甲、乙、丙、丁四個(gè)工廠進(jìn)行社會實(shí)踐,其中工廠甲必需有班級去,每班去何工廠可自由選擇,則不同的安排方案有().A.16種 B.18種 C.37種 D.48種【答案】C【解析】【分析】依據(jù)去工廠甲的班級數(shù)進(jìn)行分類探討,由此計(jì)算出總的安排方案.【詳解】三個(gè)班有一個(gè)班去甲,方法數(shù)有;三個(gè)班有兩個(gè)班去甲,方法數(shù)有;三個(gè)班都去甲,方法數(shù)有,故總的方法數(shù)為種,故選C.【點(diǎn)睛】本小題主要考查分類加法計(jì)數(shù)原理,考查組合數(shù)的計(jì)算,屬于基礎(chǔ)題.5.函數(shù)的部分圖象大致形態(tài)是()A. B. C. D.【答案】A【解析】【分析】依據(jù)題意,分析可得函數(shù)為奇函數(shù),且在上,,據(jù)此解除分析可得答案.【詳解】解:依據(jù)題意,,其定義域?yàn)?,則有,即函數(shù)為奇函數(shù),解除、;又由當(dāng)上時(shí),,,,則有,解除;故選:.6.已知定義在上的函數(shù)滿意,①,②為奇函數(shù),③當(dāng)時(shí),恒成立.則、、的大小關(guān)系正確的是()A. B.C. D.【答案】C【解析】【分析】依據(jù)單調(diào)性的定義可得在上單調(diào)遞增,依據(jù)已知條件可得是周期為的奇函數(shù),依據(jù)周期性和單調(diào)性即可求解.【詳解】由可得的周期為,因?yàn)槠婧瘮?shù),所以為奇函數(shù),因?yàn)闀r(shí),,所以在上單調(diào)遞增,因?yàn)闉槠婧瘮?shù),所以在上單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,,,所以,?故選:C.7.中,,D為AB的中點(diǎn),,則()A.0 B.2 C.-2 D.-4【答案】A【解析】【分析】取為基底,表示出即可求解.【詳解】在中,D為AB的中點(diǎn),,取為基底,所以,.所以.因?yàn)?,,所?即.
故選:A8.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且,則()A. B.C. D.【答案】C【解析】【分析】易推斷,構(gòu)造函數(shù)可得在上單調(diào)遞增,∴,即.【詳解】∵,∴在上單調(diào)遞減∴,構(gòu)造函數(shù),則∴在上單調(diào)遞增,∴即.故選:C.二、選擇題:本小題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對的得5分,部分選對的得2分,有選錯(cuò)的得0分.9.下面命題正確的是()A.“”是“”的充分不必要條件B.命題“若,則”的否定是“存在,則”C.設(shè),則“且”是“”的必要不充分條件D.設(shè),則“”是“”的必要不充分條件【答案】AD【解析】【分析】依據(jù)充分條件、必要條件的判定方法,逐項(xiàng)判定,即可求解.【詳解】對于A中,由,可得,所以充分性成立;反之:當(dāng)時(shí),可得或,所以必要性不成立,所以“”是“”的充分不必要條件,所以A正確;對于B中,命題“若,則”的否定是“存在,則”,所以不正確;對于C中,設(shè),由且,可得成,即充分性成立,反之:由成立時(shí),可能且,即必要性不成立,所以“且”是“”的充分不必要條件,所以C不正確;對于D中,設(shè),當(dāng)時(shí),可得,即充分性不成立,反之:由,可得成立,即必要性成立,所以“”是“”的必要不充分條件,所以D正確.故選:AD.10.已知向量,,,,則下列說法正確的是()A.若,則有最小值B.若,則有最小值C.若,則的值為D.若,則的值為1【答案】A【解析】【分析】依據(jù)向量的坐標(biāo)運(yùn)算,求得,結(jié)合向量平行和垂直的坐標(biāo)運(yùn)算以及基本不等式,對每個(gè)選項(xiàng)進(jìn)行逐一分析,即可推斷和選擇.【詳解】∵,,∴.對A:若,則,當(dāng)且僅當(dāng),即,,取得等號,故選項(xiàng)A正確;對B:若,則,當(dāng)且僅當(dāng),,取得等號,故選項(xiàng)B錯(cuò)誤;對C:若,則,即,則,故選項(xiàng)C錯(cuò)誤;對D:因?yàn)?所以,,則D不正確.故選:A.11.函數(shù)的部分圖像如圖所示,下列說法正確的是()A.圖像的一條對稱軸可能為直線B.函數(shù)的解折式可以為C.的圖像關(guān)于點(diǎn)對稱D.在區(qū)間上單調(diào)遞增【答案】BC【解析】【分析】先根圖象求出函數(shù)解析式,然后逐個(gè)分析推斷即可【詳解】由圖象可知,得,所以,所以,因?yàn)楹瘮?shù)圖象過點(diǎn),所以,所以,得,因?yàn)椋?,所以,對于A,因?yàn)?,所以不是圖象的一條對稱軸,所以A錯(cuò)誤,對于B,,所以B正確,對于C,因?yàn)椋缘膱D象關(guān)于點(diǎn)對稱,所以C正確,對于D,由,得,當(dāng)時(shí),,當(dāng)時(shí),,可知函數(shù)在,上遞增,所以函數(shù)在上遞減,所以D錯(cuò)誤,故選:BC12.某校團(tuán)委組織“喜迎二十大、恒久跟黨走、奮進(jìn)新征程”學(xué)生書畫作品競賽,經(jīng)評審,評出一、二、三等獎(jiǎng)作品若干(一、二等獎(jiǎng)作品數(shù)相等),其中男生作品分別占,,,現(xiàn)從獲獎(jiǎng)作品中任取一件,記“取出一等獎(jiǎng)作品”為事務(wù),“取出男生作品”為事務(wù),若,則()A. B.一等獎(jiǎng)與三等獎(jiǎng)的作品數(shù)之比為C. D.【答案】ABD【解析】【分析】依題意設(shè)一、二等獎(jiǎng)作品有件,三等獎(jiǎng)作品有件,即可表示男、女生獲一、二、三等獎(jiǎng)的作品數(shù),再依據(jù)求出與的關(guān)系,從而一一推斷即可.【詳解】解:設(shè)一、二等獎(jiǎng)作品有件,三等獎(jiǎng)作品有件,則男生獲一、二、三等獎(jiǎng)的作品數(shù)為、、,女生獲一、二、三等獎(jiǎng)的作品數(shù)為、、,因?yàn)?,所以,所以,故A正確;,故C錯(cuò)誤;一等獎(jiǎng)與三等獎(jiǎng)的作品數(shù)之比為,故B正確;,故D正確;故選:ABD三、填空題:本題共4小題,每小題5分,共20分.13.若雙曲線的右焦點(diǎn)到一條漸近線的距離為,則其離心率是________.【答案】2【解析】【分析】取雙曲線得一條漸近線,依據(jù)右焦點(diǎn)到一條漸近線的距離為,可求得,即可求出雙曲線的離心率.【詳解】解:不妨取雙曲線的一條漸近線,即,則右焦點(diǎn)漸近線的距離,所以,則,所以雙曲線的離心率.故答案為:2.14.若的綻開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則綻開式中的常數(shù)項(xiàng)是_________.【答案】180【解析】【分析】寫出二項(xiàng)綻開式通項(xiàng)公式,由只有第六項(xiàng)二項(xiàng)式系數(shù)最大求得,再確定常數(shù)項(xiàng).【詳解】,由題意,此不等式組只有一解,因此().,,所以常數(shù)項(xiàng)為.故答案為:180.15.如圖,在中,是的中點(diǎn),若,則實(shí)數(shù)的值是__________.【答案】##【解析】【分析】依據(jù)平面對量基本定理結(jié)合已知條件將用表示即可求出的值【詳解】因?yàn)椋詾榈闹悬c(diǎn),因?yàn)槭堑闹悬c(diǎn),所以,所以,因?yàn)椋?,故答案為?6.設(shè)函數(shù)已知不等式的解集為,則______,若方程有3個(gè)不同的解,則m的取值范圍是________.【答案】①.0②.【解析】【分析】(1)先對函數(shù)求導(dǎo),推斷其單調(diào)性和極值,在同始終角坐標(biāo)系中,作出函數(shù)與的大致圖象,結(jié)合圖象,由不等式的解集,即可求出的取值;依據(jù)方程有3個(gè)不同的解,等價(jià)于函數(shù)與直線有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合的方法,即可求出結(jié)果.【詳解】由,得;由得或;由得;所以在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;因此,當(dāng)時(shí),函數(shù)取得極大值;當(dāng)時(shí),函數(shù)取得微小值;由可得或;在同始終角坐標(biāo)系中,作出函數(shù)與的大致圖象如下,由圖象可得,當(dāng)時(shí),;因?yàn)?,為使不等式的解集為,結(jié)合圖象可知,只有;所以因?yàn)榉匠逃?個(gè)不同的解,等價(jià)于函數(shù)與直線有三個(gè)不同的交點(diǎn),作出函數(shù)的大致圖象如下:由圖象可得,;故答案為:;.四、解答題:本題共6小題,共70分.請?jiān)诖痤}卡指定區(qū)域內(nèi)作答.解答時(shí)應(yīng)寫出文字說明、證明過程演算步驟.17.已知的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,,求的面積.【答案】(1)(2)【解析】【分析】(1)利用正弦定理,角化邊,得到,利用余弦定理,求得答案;(2)利用余弦定理結(jié)合求得,利用三角形面積公式,求得答案.【小問1詳解】因?yàn)?,在中,由正弦定理可得,化簡得,所?又因?yàn)椋?【小問2詳解】由余弦定理,得因?yàn)椋詫⒋肷鲜?,解得,所以的面積.18.已知函數(shù),其中.若函數(shù)的圖象在點(diǎn)處的切線與直線平行.(1)求的值;(2)求函數(shù)的極值.【答案】(1);(2)極大值,微小值.【解析】【分析】(1)由導(dǎo)數(shù)的幾何意義求解即可;(2)由導(dǎo)數(shù)探討函數(shù)單調(diào)性,進(jìn)而求得極值即可.【詳解】(1)由已知,可得.函數(shù)的圖象在點(diǎn)處的切線與直線平行,,解得.閱歷證,符合題意.(2)由(1)得,求導(dǎo).令,得或當(dāng)改變時(shí),與的改變狀況如下表:單調(diào)遞增極大值單調(diào)遞減微小值單挑遞增當(dāng)時(shí),取得極大值,且;當(dāng)時(shí),取得微小值,且.【點(diǎn)睛】方法點(diǎn)睛:本題主要考查了利用導(dǎo)數(shù)的幾何意義求曲線在某點(diǎn)處的切線方程,以及利用導(dǎo)數(shù)探討函數(shù)的單調(diào)性與極值,求切線常見考法:(1)已知切點(diǎn)求斜率k,即求該點(diǎn)處的導(dǎo)數(shù)值:.(2)已知斜率k,求切點(diǎn),即解方程.(3)若求過點(diǎn)的切線方程,可設(shè)切點(diǎn)為,由,求解即可.19.已知函數(shù).(1)若且,求的值;(2)記函數(shù)在上的最大值為b,且函數(shù)在上單調(diào)遞增,求實(shí)數(shù)a的最小值.【答案】(1)(2)【解析】【分析】(1)化簡f(x)解析式,依據(jù)求值即可;(2)求出f(x)最大值b,求出f(x)的單調(diào)遞增區(qū)間,求出與已知區(qū)間對應(yīng)的增區(qū)間A,則是區(qū)間A的子集.【小問1詳解】,∵,∴,∵,∴,∴,∴;【小問2詳解】當(dāng)時(shí),,,∴,由,,得,,又∵函數(shù)在上單調(diào)遞增,∴,∴,∴,∴實(shí)數(shù)a的最小值是.20.如圖,在四棱錐中,底面為直角梯形,其中,,,平面,且.點(diǎn)在棱上,點(diǎn)為中點(diǎn).(1)證明:若,則直線平面;(2)求平面與平面所成角的正弦值.【答案】(1)證明見解析(2)【解析】【分析】(1)取,利用平行線分線段成比例和平行四邊形的性質(zhì),結(jié)合線面平行的判定可證得平面,平面,由面面平行的判定與性質(zhì)可證得結(jié)論;(2)以為坐標(biāo)原點(diǎn)可建立空間直角坐標(biāo)系,利用面面角的向量求法可求得所求角的余弦值,由余弦值可求得正弦值.【小問1詳解】在上取一點(diǎn),使得,連接,,,又平面,平面,平面;,,,,,四邊形為平行四邊形,,又平面,平面,平面;,平面,平面平面,平面,平面.【小問2詳解】由題意知:以為坐標(biāo)原點(diǎn),正方向?yàn)檩S,可建立如圖所示空間直角坐標(biāo)系,則,,,,,,,平面與平面所成設(shè)平面的法向量,則,令,解得:,,;設(shè)平面的法向量,則,令,解得:,,;,平面與平面所成角的正弦值為.21.隨著原材料供應(yīng)價(jià)格的上漲,某型防護(hù)口罩售價(jià)逐月上升.1至5月,其售價(jià)(元/只)如下表所示:月份x售價(jià)y(元/只)11.222.83.4(1)請依據(jù)參考公式和數(shù)據(jù)計(jì)算相關(guān)系數(shù)(精確到0.01)說明該組數(shù)據(jù)中y與x之間的關(guān)系可用線性回來模型進(jìn)行擬合,并求y關(guān)于x的線性回來方程;(2)某人安排在六月購進(jìn)一批防護(hù)口罩,經(jīng)詢問屆時(shí)將有兩種促銷方案:方案一:線下促銷實(shí)惠.采納到店手工“摸球促銷”的方式.其規(guī)則為:袋子里有顏色為紅、黃、藍(lán)的三個(gè)完全相同的小球,有放回的摸三次.若三次摸的是相同顏色的享受七折實(shí)惠,三次摸的僅有兩次相同顏色的享受八折實(shí)惠,其余的均九折實(shí)惠.方案二:線上促銷實(shí)惠.與店鋪網(wǎng)頁上的機(jī)器人進(jìn)行“石頭、剪刀、布”視頻競賽.客戶和機(jī)器人每次同時(shí)、隨機(jī)、獨(dú)立地選擇“石頭、剪刀、布”中的一種進(jìn)行比對,約定:石頭勝剪刀,剪刀勝布,布勝石頭.手勢相同視為平局,不分輸贏.客戶和機(jī)器人需競賽三次,若客戶連勝三次則享受七折實(shí)惠,三次都不勝享受九折實(shí)惠,其余八折實(shí)惠.請用(1)中方程對六月售價(jià)進(jìn)行預(yù)估,用X表示據(jù)預(yù)估數(shù)據(jù)促銷后的售價(jià),求兩種方案下X的分布列和數(shù)學(xué)期望,并依據(jù)計(jì)算結(jié)果進(jìn)行推斷,選擇哪種方案更實(shí)惠.參考公式:,,其中,.參考數(shù)據(jù):,,,.【答案】(1)相關(guān)系數(shù);(2)6月預(yù)料售價(jià)為4元/只;方案一分布列見解析;期望為;方案二分布列見解析;期望為;應(yīng)選擇方案一【解析】【分析】(1)依據(jù)題中所給數(shù)據(jù),計(jì)算出的值,帶入?yún)⒖脊接?jì)算即可.(2)依據(jù)(1)中線性回來方程,求得X可取的值,依次計(jì)算概率,列出分布列,求解數(shù)學(xué)期望,利用數(shù)學(xué)期望比較兩種方案.【小問1詳解】相關(guān)系數(shù),由于0.98接近1,說明y與x之間有較強(qiáng)的線性相關(guān)關(guān)系.,,所以.【小問2詳解】由(1)可知,,當(dāng)時(shí),,即6月預(yù)料售價(jià)為4元/只.X可取的值為2.8,3.2,3.6.若選實(shí)惠方案一,;;;2.83.23.6此時(shí).若選實(shí)惠方案二,客戶每次和機(jī)器人競賽時(shí),勝出的概率為,則不勝的概率為.;;;2.83.23.6此時(shí).,說明為使花費(fèi)的期望值最小,應(yīng)選擇方案一.22.已知.(1)探討的單調(diào)性;(2)已知函數(shù)有兩個(gè)極值點(diǎn),求證:.【答案】(1)當(dāng)時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),函數(shù)單調(diào)遞增.(2)見解析.【解析】【分析】(1)先對函數(shù)求導(dǎo),令,求出解為,從而可探究、隨自變量的改變,結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智能航運(yùn)物流船運(yùn)輸合作協(xié)議合同2篇
- 二零二五年測繪數(shù)據(jù)處理與分析合同范本3篇
- 二零二五年特種花卉種子采購合同范本3篇
- 二零二五版商業(yè)街區(qū)保安臨時(shí)工勞動合同示范文本3篇
- 二零二五版生態(tài)農(nóng)業(yè)基地種植分包合同3篇
- 河北省二零二五年度二手房買賣合同附帶專業(yè)拆除及清理服務(wù)3篇
- 二零二五年度車輛過戶手續(xù)代理合同3篇
- 二零二五版汽車制造專用管子配件供應(yīng)合同3篇
- 二零二五年度酒店食堂承包服務(wù)合同范本3篇
- 二零二五年度礦業(yè)風(fēng)險(xiǎn)評估與風(fēng)險(xiǎn)管理合同2篇
- 割接方案的要點(diǎn)、難點(diǎn)及采取的相應(yīng)措施
- 2025年副護(hù)士長競聘演講稿(3篇)
- 2025至2031年中國臺式燃?xì)庠钚袠I(yè)投資前景及策略咨詢研究報(bào)告
- 原發(fā)性腎病綜合征護(hù)理
- 第三章第一節(jié)《多變的天氣》說課稿2023-2024學(xué)年人教版地理七年級上冊
- 2025年中國電科集團(tuán)春季招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年度建筑施工現(xiàn)場安全管理合同2篇
- 建筑垃圾回收利用標(biāo)準(zhǔn)方案
- 福建省廈門市2023-2024學(xué)年高二上學(xué)期期末考試語文試題(解析版)
- 分子標(biāo)記及遺傳連鎖圖譜
- 防火墻施工組織設(shè)計(jì)
評論
0/150
提交評論