安徽省合肥市一六八中學2025屆九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
安徽省合肥市一六八中學2025屆九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
安徽省合肥市一六八中學2025屆九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
安徽省合肥市一六八中學2025屆九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
安徽省合肥市一六八中學2025屆九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省合肥市一六八中學2025屆九年級數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有()A.1個 B.2個 C.3個 D.4個2.把方程的左邊配方后可得方程()A. B. C. D.3.如圖,在△ABC中,AB=2.2,BC=3.6,∠B=60°,將△ABC繞點A按逆時針方向旋轉(zhuǎn)得到△ADE,若點B的對應(yīng)點D恰好落在BC邊上時,則CD的長為()A.1.5 B.1.4 C.1.3 D.1.24.如圖,空地上(空地足夠大)有一段長為10m的舊墻MN,小敏利用舊墻和木欄圍成一個矩形菜園ABCD,已知木欄總長100m,矩形菜園ABCD的面積為900m1.若設(shè)AD=xm,則可列方程()A.(60﹣)x=900 B.(60﹣x)x=900 C.(50﹣x)x=900 D.(40﹣x)x=9005.擲一枚質(zhì)地均勻的硬幣6次,下列說法正確的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上6.二次函數(shù),當時,則()A. B. C. D.7.圖①是由五個完全相同的小正方體組成的立體圖形.將圖①中的一個小正方體改變位置后如圖②,則三視圖發(fā)生改變的是()A.主視圖 B.俯視圖C.左視圖 D.主視圖、俯視圖和左視圖都改變8.如圖,直線l⊥x軸于點P,且與反比例函數(shù)y1=(x>0)及y2=(x>0)的圖象分別交于點A,B,連接OA,OB,已知△OAB的面積為2,則k1﹣k2=().A.-2 B.2 C.-4 D.49.一個半徑為2cm的圓的內(nèi)接正六邊形的面積是()A.24cm2 B.6cm2 C.12cm2 D.8cm210.如圖為二次函數(shù)的圖象,在下列說法中:①;②方程的根是,;③④當時,隨的增大而減小.不正確的說法有()A.① B.①② C.①③ D.②④11.下列二次根式是最簡二次根式的是()A. B. C. D.12.已知正六邊形的邊心距是,則正六邊形的邊長是()A. B. C. D.二、填空題(每題4分,共24分)13.一元二次方程x2﹣5x=0的兩根為_________.14.將拋物線y=x2向左平移4個單位后,再向下平移2個單位,則此時拋物線的解析式是________.15.已知m是方程x2﹣3x﹣1=0的一個根,則代數(shù)式2m2﹣6m﹣7的值等于_____.16.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為ts,當t=__________時,△CPQ與△CBA相似.17.如圖,菱形OABC的頂點O是原點,頂點B在y軸上,菱形的兩條對角線的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點C,則k的值為.18.已知直線y=kx(k≠0)與反比例函數(shù)y=﹣的圖象交于點A(x?,y?),B(x?,y?)則2x?y?+x?y?的值是_____.三、解答題(共78分)19.(8分)如圖,已知直線與軸交于點,與軸交于點,拋物線經(jīng)過、兩點并與軸的另一個交點為,且.(1)求拋物線的解析式;(2)點為直線上方對稱軸右側(cè)拋物線上一點,當?shù)拿娣e為時,求點的坐標;(3)在(2)的條件下,連接,作軸于,連接、,點為線段上一點,點為線段上一點,滿足,過點作交軸于點,連接,當時,求的長.20.(8分)倡導全民閱讀,建設(shè)書香社會.(調(diào)查)目前,某地紙媒體閱讀率為40%,電子媒體閱讀率為80%,綜合媒體閱讀率為90%.(百度百科)某種媒體閱讀率,指有某種媒體閱讀行為人數(shù)占人口總數(shù)的百分比;綜合閱讀率,在紙媒體和電子體中,至少有一種閱讀行為的人數(shù)占人口總數(shù)的百分比,它反映了一個國家或地區(qū)的閱讀水平.(問題解決)(1)求該地目前只有電子媒體閱讀行為人數(shù)占人口總數(shù)的百分比;(2)國家倡導全民閱讀,建設(shè)書香社會.預(yù)計未來兩個五年中,若該地每五年紙媒體閱讀人數(shù)按百分數(shù)x減少,綜合閱讀人數(shù)按百分數(shù)x增加,這樣十年后,只讀電子媒體的人數(shù)比目前增加53%,求百分數(shù)x.21.(8分)為了了解全校1500名學生對學校設(shè)置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項體育活動的喜愛情況,在全校范圍內(nèi)隨機抽查部分學生,對他們喜愛的體育項目(每人只選一項)進行了問卷調(diào)查,將統(tǒng)計數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列各題.(1)m=%,這次共抽取了名學生進行調(diào)查;并補全條形圖;(2)請你估計該校約有名學生喜愛打籃球;(3)現(xiàn)學校準備從喜歡跳繩活動的4人(三男一女)中隨機選取2人進行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學生的概率是多少?22.(10分)為了解學生的藝術(shù)特長發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)扇形統(tǒng)計圖中“戲曲”部分對應(yīng)的扇形的圓心角為度;(2)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列舉法求恰好選中“舞蹈、聲樂”這兩項的概率.23.(10分)運城菖蒲酒產(chǎn)于山西垣曲.莒蒲灑遠在漢代就已名噪酒壇,為歷代帝王將相所喜愛,并被列為歷代御膳香醪.菖蒲酒在市場的銷售量會根據(jù)價格的變化而變化.菖蒲酒每瓶的成本價是元,某超市將售價定為元時,每天可以銷售瓶,若售價每降低元,每天即可多銷售瓶(售價不能高于元),若設(shè)每瓶降價元用含的代數(shù)式表示菖蒲酒每天的銷售量.每瓶菖蒲酒的售價定為多少元時每天獲取的利潤最大?最大利潤是多少?24.(10分)在平面直角坐標系中,已知拋物線y=x2+kx+c的圖象經(jīng)過點C(0,1),當x=2時,函數(shù)有最小值.(1)求拋物線的解析式;(2)直線l⊥y軸,垂足坐標為(0,﹣1),拋物線的對稱軸與直線l交于點A.在x軸上有一點B,且AB=,試在直線l上求異于點A的一點Q,使點Q在△ABC的外接圓上;(3)點P(a,b)為拋物線上一動點,點M為坐標系中一定點,若點P到直線l的距離始終等于線段PM的長,求定點M的坐標.25.(12分)如圖,已知AB是⊙O的直徑,點C在⊙O上,AD垂直于過點C的切線,垂足為D,且∠BAD=80°,求∠DAC的度數(shù).26.函數(shù)與函數(shù)(、為不等于零的常數(shù))的圖像有一個公共點,其中正比例函數(shù)的值隨的值增大而減小,求這兩個函數(shù)的解析式.

參考答案一、選擇題(每題4分,共48分)1、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又點F為BC的中點,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正確;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正確;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等邊三角形,故④正確;由題給條件,證不出CM=DM,故①錯誤.故正確的有②③④,共3個.故選C.2、A【分析】首先把常數(shù)項移項后,再在左右兩邊同時加上一次項系數(shù)的一半的平方,繼而可求得答案.【詳解】,,,.故選:.【點睛】此題考查了配方法解一元二次方程的知識,此題比較簡單,注意掌握配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.3、B【分析】運用旋轉(zhuǎn)變換的性質(zhì)得到AD=AB,進而得到△ABD為等邊三角形,求出BD即可解決問題.【詳解】解:如圖,由題意得:AD=AB,且∠B=60°,∴△ABD為等邊三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故選:B.【點睛】該題主要考查了旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的判定等幾何知識點及其應(yīng)用問題;牢固掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.4、B【分析】若AD=xm,則AB=(60?x)m,根據(jù)矩形面積公式列出方程.【詳解】解:AD=xm,則AB=(100+10)÷1?x=(60?x)m,由題意,得(60?x)x=2.故選:B.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.5、B【分析】根據(jù)隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,可得答案.【詳解】解:擲硬幣問題,正、反面朝上的次數(shù)屬于隨機事件,不是確定事件,故A,C,D錯誤.

故選:B.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、D【分析】因為=,對稱軸x=1,函數(shù)開口向下,分別求出x=-1和x=1時的函數(shù)值即可;【詳解】∵=,∴當x=1時,y有最大值5;當x=-1時,y==1;當x=2時,y==4;∴當時,;故選D.【點睛】本題主要考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.7、A【分析】根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上邊看得到的圖形是俯視圖對兩個組合體進行判斷,可得答案.【詳解】解:①的主視圖是第一層三個小正方形,第二層中間一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;②的主視圖是第一層三個小正方形,第二層左邊一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;所以將圖①中的一個小正方體改變位置后,俯視圖和左視圖均沒有發(fā)生改變,只有主視圖發(fā)生改變,故選:A.【點睛】本題考查了三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.8、D【分析】由反比例函數(shù)的圖象過第一象限可得出,,再由反比例函數(shù)系數(shù)的幾何意義即可得出,,根據(jù)的面積為再結(jié)合三角形之間的關(guān)系即可得出結(jié)論.【詳解】∵反比例函數(shù)及的圖象均在第一象限內(nèi),

∴,,

∵⊥軸,

∴,,

∴,

解得:.

故選:D.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題已經(jīng)反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵是反比例函數(shù)系數(shù)k的幾何意義得出.9、B【解析】設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則△OAB是正三角形,△OAB的面積的六倍就是正六邊形的面積解:如圖所示:設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則∠AOB=60°,OA=OB=2cm,∴△OAB是正三角形,∴AB=OA=2cm,OC=OA?sin∠A=2×=(cm),∴S△OAB=AB?OC=×2×=(cm2),∴正六邊形的面積=6×=6(cm2).故選B.10、A【分析】根據(jù)二次函數(shù)的圖象與性質(zhì)(對稱性、增減性)、以及與二次方程的關(guān)系逐個判斷即可.【詳解】二次函數(shù)的圖象的開口向下,與y軸正半軸相交,則①不正確二次函數(shù)的對稱軸為,與x軸的一個交點為與x軸的另一個交點為方程的根是,則②正確二次函數(shù)的圖象上,所對應(yīng)的點位于第一象限,即,則③正確由二次函數(shù)的圖象可知,當時,隨的增大而減小,則④正確綜上,不正確的說法只有①故選:A.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì)(對稱性、增減性)、以及與二次方程的關(guān)系,掌握理解并靈活運用函數(shù)的性質(zhì)是解題關(guān)鍵.11、C【解析】根據(jù)最簡二次根式的定義逐項分析即可.【詳解】A.=3,故不是最簡二次根式;B.=,故不是最簡二次根式;C.,是最簡二次根式;D.=,故不是最簡二次根式;故選C.【點睛】本題考查了最簡二次根式的識別,如果二次根式的被開方式中都不含分母,并且也都不含有能開的盡方的因式,象這樣的二次根式叫做最簡二次根式.12、A【分析】如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB,然后求出正六邊形的中心角,證出△OAB為等邊三角形,然后利用等邊三角形的性質(zhì)和銳角三角函數(shù)即可求出結(jié)論.【詳解】解:如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB正六邊形的中心角∠AOB=360°÷6=60°∴△OAB為等邊三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六邊形的邊長是.故選A.【點睛】此題考查的是根據(jù)正六邊形的邊心距求邊長,掌握中心角的定義、等邊三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、0或5【解析】分析:本題考查的是一元二次方程的解法——因式分解法.解析:故答案為0或5.14、y=(x+4)2-2【解析】∵y=x2向左平移4個單位后,再向下平移2個單位.∴y=.故此時拋物線的解析式是y=.故答案為y=(x+4)2-2.點睛:主要考查了函數(shù)圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.15、﹣1.【分析】根據(jù)一元二次方程的解的概念可得關(guān)于m的方程,變形后整體代入所求式子即得答案.【詳解】解:∵m是方程x2﹣3x﹣1=0的一個根,∴m2﹣3m﹣1=0,∴m2﹣3m=1,∴2m2﹣6m﹣7=2(m2﹣3m)﹣7=2×1﹣7=﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的解的概念和代數(shù)式求值,熟練掌握整體代入的數(shù)學思想和一元二次方程的解的概念是解題關(guān)鍵.16、4.8或【分析】根據(jù)題意可分兩種情況,①當CP和CB是對應(yīng)邊時,△CPQ∽△CBA與②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質(zhì)分別求出時間t即可.【詳解】①CP和CB是對應(yīng)邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質(zhì),解題的關(guān)鍵是分情況討論.17、-6【解析】分析:∵菱形的兩條對角線的長分別是6和4,∴A(﹣3,2).∵點A在反比例函數(shù)的圖象上,∴,解得k=-6.【詳解】請在此輸入詳解!18、1【分析】由于正比例函數(shù)和反比例函數(shù)圖象都是以原點為中心的中心對稱圖形,因此它們的交點A、B關(guān)于原點成中心對稱,則有x?=﹣x?,y?=﹣y?.由A(x?,y?)在雙曲線y=﹣上可得x?y?=﹣5,然后把x?=﹣x?,y?=﹣y?代入2x?y?+x?y?的就可解決問題.【詳解】解:∵直線y=kx(k>0)與雙曲線y=﹣都是以原點為中心的中心對稱圖形,∴它們的交點A、B關(guān)于原點成中心對稱,∴x?=﹣x?,y?=﹣y?.∵A(x?,y?)在雙曲線y=﹣上,∴x?y?=﹣5,∴2x?y?+x?y?=2x?(﹣y?)+(﹣x?)y?=﹣3x?y?=1.故答案為:1.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標特征、正比例函數(shù)及反比例函數(shù)圖象的對稱性等知識,得到A、B關(guān)于原點成中心對稱是解決本題的關(guān)鍵.三、解答題(共78分)19、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐標,把A、B的坐標代入拋物線解析式,解方程組即可得出結(jié)論;(3)設(shè)R(t,).作RK⊥y軸于K,RW⊥x軸于W,連接OR.根據(jù)計算即可;(3)在RH上截取RM=OA,連接CM、AM,AM交PE于G,作QF⊥OB于H.分兩種情況討論:①點E在F的左邊;②點E在F的右邊.【詳解】(3)當x=0時y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).當y=0時x=4,∴B(4,0).把A、B坐標代入得解得:,∴拋物線的解析式為.(3)設(shè)R(t,).作RK⊥y軸于K,RW⊥x軸于W,連接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,連接CM、AM,AM交PE于G,作QF⊥OB于H.分兩種情況討論:①當點E在F的左邊時,如圖3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.設(shè)CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE為平行四邊形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②當點E在F的右邊時,設(shè)AM交QE于N.如圖3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.設(shè)CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE為平行四邊形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.綜上所述:CP的值為3或.【點睛】本題是二次函數(shù)的綜合題目,涉及了相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì),解答本題需要我們熟練各個知識點的內(nèi)容,注意要分類討論.20、(1)該社區(qū)有電子媒體閱讀行為人數(shù)占人口總數(shù)的百分比為50%.(2)x為10%.【分析】(1)根據(jù)題意,利用某地傳統(tǒng)媒體閱讀率為80%,數(shù)字媒體閱讀率為40%,而綜合閱讀率為90%,得出等式求出答案;(2)根據(jù)綜合閱讀人數(shù)﹣紙媒體閱讀人數(shù)=只讀電子媒體的人數(shù),結(jié)合該地每五年紙媒體閱讀人數(shù)按百分數(shù)x減少,綜合閱讀人數(shù)按百分數(shù)x增加列出方程即可求出答案.【詳解】解:(1)設(shè)某地人數(shù)為a,既有傳統(tǒng)媒體閱讀又有數(shù)字媒體閱讀的人數(shù)為y,則傳統(tǒng)媒體閱讀人數(shù)為0.8a,數(shù)字媒體閱讀人數(shù)為0.4a.依題意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴傳統(tǒng)媒體閱讀又有數(shù)字媒體閱讀的人數(shù)占總?cè)丝诳倲?shù)的百分比為30%.則該社區(qū)有電子媒體閱讀行為人數(shù)占人口總數(shù)的百分比為=80%﹣30%=50%.(2)依題意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x為10%.【點睛】此題主要考查了一元二次方程的應(yīng)用,根據(jù)題意得出正確等量關(guān)系是解題關(guān)鍵.21、(1)20;50;(2)360;(3).【解析】試題分析:(1)首先由條形圖與扇形圖可求得m=100%-14%-8%-24%-34%=20%;由跳繩的人數(shù)有4人,占的百分比為8%,可得總?cè)藬?shù)4÷8%=50;(2)由1500×24%=360,即可求得該校約有360名學生喜愛打籃球;(3)首先根據(jù)題意畫出表格,然后由表格即可求得所有等可能的結(jié)果與抽到一男一女學生的情況,再利用概率公式即可求得答案.試題解析:(1)m=100%-14%-8%-24%-34%=20%;∵跳繩的人數(shù)有4人,占的百分比為8%,∴4÷8%=50;如圖所示;50×20%=10(人).(2)1500×24%=360;(3)列表如下:

男1

男2

男3

男1

男2,男1

男3,男1

女,男1

男2

男1,男2

男3,男2

女,男2

男3

男1,男3

男2,男3

女,男3

男1,女

男2,女

男3,女

∵所有可能出現(xiàn)的結(jié)果共12種情況,并且每種情況出現(xiàn)的可能性相等.其中一男一女的情況有6種.∴抽到一男一女的概率P=.考點:1.列表法與樹狀圖法;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖.22、(1)28.8;(2)【分析】(1)用喜歡聲樂的人數(shù)除以它所占百分比即可得到調(diào)查的總?cè)藬?shù),用總?cè)藬?shù)分別減去喜歡舞蹈、樂器、和其它的人數(shù)得到喜歡戲曲的人數(shù),即可得出答案;(2)先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好選中“①舞蹈、③聲樂”兩項活動的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】(1)抽查的人數(shù)=8÷16%=50(名);喜歡“戲曲”活動項目的人數(shù)=50﹣12﹣16﹣8﹣10=4(人);扇形統(tǒng)計圖中“戲曲”部分對應(yīng)的扇形的圓心角為360°×=28.8°;故答案為:28.8;(2)舞蹈、樂器、聲樂、戲曲的序號依次用①②③④表示,畫樹狀圖:共有12種等可能的結(jié)果數(shù),其中恰好選中“①舞蹈、③聲樂”兩項活動的有2種情況,所有故恰好選中“舞蹈、聲樂”兩項活動的概率==.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.也考查了扇形統(tǒng)計圖和條形統(tǒng)計圖.23、(1);(2)售價定為元時,有最大利潤,最大利潤為元.【分析】⑴依據(jù)題意列出式子即可;⑵依據(jù)題意可以得到y(tǒng)=-5(x-4)2+1280解出x=4時,利潤最大,算出售價及最大利潤即可.【詳解】解:莒蒲酒每天的銷售量為.設(shè)每天銷售菖蒲酒獲得的利潤為元由題意,得.當時,利潤有最大值,即售價定為元時,有最大利潤,最大利潤為元.【點睛】此題主要考查了一元二次方程實際生活中的應(yīng)用,找準等量關(guān)系列出一元二次方程是解題的關(guān)鍵.24、(1)y=x2﹣x+1;(2)Q(1,﹣1);(3)M(2,1)【分析】(1)由已知可求拋物線解析式為y=x2﹣x+1;(2)由題意可知A(2,﹣1),設(shè)B(t,0),由AB=,所以(t﹣2)2+1=2,求出B(1,0)或B(3,0),當B(1,0)時,A、B、C三點共線,舍去,所以B(3,0),可證明△ABC為直角三角形,BC為外接圓的直徑,外接圓的圓心為BC的中點(,),半徑為,設(shè)Q(x,﹣1),則有(x﹣)2+(+1)2=()2,即可求Q(1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論