版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的個數(shù)有()A.1個 B.2個 C.3個 D.4個2.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米3.關(guān)于x的一元二次方程x2﹣2x﹣m=0有實根,則m的值可能是()A.﹣4 B.﹣3 C.﹣2 D.﹣14.如圖,△AOB為等腰三角形,頂點A的坐標(2,),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉(zhuǎn)一定角度后得△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為()A.(,) B.(,) C.(,) D.(,4)5.拋物線y=x2+bx+c過(-2,0),(2,0)兩點,那么拋物線對稱軸為()A.x=1 B.y軸 C.x=-1 D.x=-26.下列說法錯誤的是A.必然事件發(fā)生的概率為 B.不可能事件發(fā)生的概率為C.有機事件發(fā)生的概率大于等于、小于等于 D.概率很小的事件不可能發(fā)生7.如圖,?ABCD的對角線AC,BD相交于點O,且AC=10,BD=12,CD=m,那么m的取值范圍是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<118.已知⊙O的半徑為3cm,線段OA=5cm,則點A與⊙O的位置關(guān)系是()A.A點在⊙O外 B.A點在⊙O上 C.A點在⊙O內(nèi) D.不能確定9.下列語句,錯誤的是()A.直徑是弦 B.相等的圓心角所對的弧相等C.弦的垂直平分線一定經(jīng)過圓心 D.平分弧的半徑垂直于弧所對的弦10.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.11.如圖,PA、PB、分別切⊙O于A、B兩點,∠P=40°,則∠C的度數(shù)為()A.40° B.140° C.70° D.80°12.在下列圖案中,是中心對稱圖形的是()A. B. C. D.二、填空題(每題4分,共24分)13.某企業(yè)2017年全年收入720萬元,2019年全年收入845萬元,若設該企業(yè)全年收入的年平均增長率為x,則可列方程____.14.如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,點D是AB邊上一點(不與A、B重合),若過點D的直線截得的三角形與△ABC相似,并且平分△ABC的周長,則AD的長為____.15.圖甲是小張同學設計的帶圖案的花邊作品,該作品由形如圖乙的矩形圖案設計拼接面成(不重疊,無縫隙).圖乙中,點E、F、G、H分別為矩形AB、BC、CD、DA的中點,若AB=4,BC=6,則圖乙中陰影部分的面積為_____.16.如圖,在?ABCD中,AB=10,AD=6,AC⊥BC.則BD=_____.17.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.18.如圖,拋物線和拋物線的頂點分別為點M和點N,線段MN經(jīng)過平移得到線段PQ,若點Q的橫坐標是3,則點P的坐標是__________,MN平移到PQ掃過的陰影部分的面積是__________.三、解答題(共78分)19.(8分)在平面直角坐標系中,平移一條拋物線,如果平移后的新拋物線經(jīng)過原拋物線頂點,且新拋物線的對稱軸是y軸,那么新拋物線稱為原拋物線的“影子拋物線”.(1)已知原拋物線表達式是,求它的“影子拋物線”的表達式;(2)已知原拋物線經(jīng)過點(1,0),且它的“影子拋物線”的表達式是,求原拋物線的表達式;(3)小明研究后提出:“如果兩條不重合的拋物線交y軸于同一點,且它們有相同的“影子拋物線”,那么這兩條拋物線的頂點一定關(guān)于y軸對稱.”你認為這個結(jié)論成立嗎?請說明理由.20.(8分)計算:2cos30°-tan45°-.21.(8分)如圖,已知AB為⊙O的直徑,點C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點,并且EF與⊙O相切于點D.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.22.(10分)如圖,在平行四邊形中,過點作,垂足為,連接,為上一點,且.(1)求證:.(2)若,,,求的長.23.(10分)如圖,半圓的直徑,將半圓繞點順時針旋轉(zhuǎn)得到半圓,半圓與交于點.(1)求的長;(2)求圖中陰影部分的面積.(結(jié)果保留)24.(10分)如圖,矩形OABC中,A(6,0)、C(0,)、D(0,),射線l過點D且與x軸平行,點P、Q分別是l和x軸正半軸上動點,滿足∠PQO=60°.(1)①點B的坐標是;②當點Q與點A重合時,點P的坐標為;(2)設點P的橫坐標為x,△OPQ與矩形OABC的重疊部分的面積為S,試求S與x的函數(shù)關(guān)系式及相應的自變量x的取值范圍.25.(12分)已知在平面直角坐標系xOy中,拋物線(b為常數(shù))的對稱軸是直線x=1.(1)求該拋物線的表達式;(2)點A(8,m)在該拋物線上,它關(guān)于該拋物線對稱軸對稱的點為A',求點A'的坐標;(3)選取適當?shù)臄?shù)據(jù)填入下表,并在如圖5所示的平面直角坐標系內(nèi)描點,畫出該拋物線.26.如圖,以為直徑作半圓,點是半圓弧的中點,點是上的一個動點(點不與點、重合),交于點,延長、交于點,過點作,垂足為.(1)求證:是的切線;(2)若的半徑為1,當點運動到的三等分點時,求的長.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸,如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】(1)是軸對稱圖形,不是中心對稱圖形.不符合題意;(2)不是軸對稱圖形,是中心對稱圖形,不符合題意;(3)是軸對稱圖形,也是中心對稱圖形,符合題意;(4)是軸對稱圖形,也是中心對稱圖形,符合題意;故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形關(guān)鍵是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.2、D【解析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.3、D【分析】根據(jù)題意可得,≥0,即可得出答案.【詳解】解:∵關(guān)于x的一元二次方程x2﹣2x﹣m=0有實根,∴△=(﹣2)2﹣4×1×(﹣m)≥0,解得:m≥﹣1.故選D.【點睛】本題考查的是一元二次方程的根的判別式,當時,有兩個不等實根;當時,有兩個相等實根;當時,沒有實數(shù)根.4、C【分析】利用等面積法求O'的縱坐標,再利用勾股定理或三角函數(shù)求其橫坐標.【詳解】解:過O′作O′F⊥x軸于點F,過A作AE⊥x軸于點E,∵A的坐標為(1,),∴AE=,OE=1.由等腰三角形底邊上的三線合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,則A′B=3,由旋轉(zhuǎn)前后三角形面積相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐標為().故選C.【點睛】本題考查坐標與圖形的旋轉(zhuǎn)變化;勾股定理;等腰三角形的性質(zhì);三角形面積公式.5、B【分析】由二次函數(shù)圖像與x軸的交點坐標,即可求出拋物線的對稱軸.【詳解】解:∵拋物線y=ax2+bx+c(a≠0)與x軸的交點是(-2,0)和(2,0),
∴這條拋物線的對稱軸是:x=,即對稱軸為y軸;故選:B.【點睛】本題考查了拋物線與x軸的交點問題.對于求拋物線的對稱軸的題目,可以用公式法,也可以將函數(shù)解析式化為頂點式求得,或直接利用公式x=求解.6、D【分析】利用概率的意義分別回答即可得到答案.概率的意義:必然事件就是一定發(fā)生的事件,概率是1;不可能發(fā)生的事件就是一定不發(fā)生的事件,概率是0;隨機事件是可能發(fā)生也可能不發(fā)生的事件,概率>0且<1;不確定事件就是隨機事件.【詳解】解:A、必然發(fā)生的事件發(fā)生的概率為1,正確;
B、不可能發(fā)生的事件發(fā)生的概率為0,正確;
C、隨機事件發(fā)生的概率大于0且小于1,正確;
D、概率很小的事件也有可能發(fā)生,故錯誤,
故選D.【點睛】本題考查了概率的意義及隨機事件的知識,解題的關(guān)鍵是了解概率的意義.7、D【分析】先根據(jù)平行四邊形的性質(zhì),可得出OD、OC的長,再根據(jù)三角形三邊長關(guān)系得出m的取值范圍.【詳解】∵四邊形ABCD是平行四邊形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故選:D.【點睛】本題考查平行四邊形的性質(zhì)和三角形三邊長關(guān)系,解題關(guān)鍵是利用平行四邊形的性質(zhì),得出OC和OD的長.8、A【詳解】解:∵5>3∴A點在⊙O外故選A.【點睛】本題考查點與圓的位置關(guān)系.9、B【分析】將每一句話進行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對的弧相等,∴相等的圓心角所對的弧相等,錯誤.C.弦的垂直平分線一定經(jīng)過圓心,正確.D.平分弧的半徑垂直于弧所對的弦,正確.故答案選:B.【點睛】本題考查了圓中弦、圓心角、弧度之間的關(guān)系,熟練掌握該知識點是本題解題的關(guān)鍵.10、C【分析】根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【詳解】A.當時,能判斷;B.
當時,能判斷;C.
當時,不能判斷;D.
當時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應線段是解決此題的關(guān)鍵.11、C【分析】連接OA,OB根據(jù)切線的性質(zhì)定理,切線垂直于過切點的半徑,即可求得∠OAP,∠OBP的度數(shù),根據(jù)四邊形的內(nèi)角和定理即可求的∠AOB的度數(shù),然后根據(jù)圓周角定理即可求解.【詳解】∵PA是圓的切線,∴同理根據(jù)四邊形內(nèi)角和定理可得:∴故選:C.【點睛】考查切線的性質(zhì)以及圓周角定理,連接圓心與切點是解題的關(guān)鍵.12、C【分析】根據(jù)中心對稱圖形的定義進行分析即可.【詳解】A、不是中心對稱圖形.故A選項錯誤;B、不是中心對稱圖形.故B選項錯誤;C、是中心對稱圖形.故C選項正確;D、不是中心對稱圖形.故D選項錯誤.故選C.【點睛】考點:中心對稱圖形.二、填空題(每題4分,共24分)13、720(1+x)2=1.【分析】增長率問題,一般用增長后的量=增長前的量×(1+增長率),參照本題,如果該企業(yè)全年收入的年平均增長率為x,根據(jù)2017年全年收入720萬元,2019年全年收入1萬元,即可得出方程.【詳解】解:設該企業(yè)全年收入的年平均增長率為x,則2018的全年收入為:720×(1+x)2019的全年收入為:720×(1+x)2.那么可得方程:720(1+x)2=1.故答案為:720(1+x)2=1.【點睛】本題考查了一元二次方程的運用,解此類題的關(guān)鍵是掌握等量關(guān)系式:增長后的量=增長前的量×(1+增長率).14、、、【分析】根據(jù)直線平分三角形周長得出線段的和差關(guān)系,再通過四種情形下的相似三角形的性質(zhì)計算線段的長.【詳解】解:設過點D的直線與△ABC的另一個交點為E,∵AC=4,BC=3,∴AB==5設AD=x,BD=5-x,∵DE平分△ABC周長,∴周長的一半為(3+4+5)÷2=6,分四種情況討論:①△BED∽△BCA,如圖1,BE=1+x∴,即:,解得x=,②△BDE∽△BCA,如圖2,BE=1+x∴,即:,解得:x=,BE=>BC,不符合題意.③△ADE∽△ABC,如圖3,AE=6-x∴,即,解得:x=,④△BDE∽△BCA,如圖4,AE=6-x∴,即:,解得:x=,綜上:AD的長為、、.【點睛】本題考查的相似三角形的判定和性質(zhì),根據(jù)不同的相似模型分情況討論,根據(jù)不同的線段比例關(guān)系求解.15、【分析】根據(jù)S陰=S菱形PHQF﹣2S△HTN,再求出菱形PHQF的面積,△HTN的面積即可解決問題.【詳解】如圖,設FM=HN=a.由題意點E、F、G、H分別為矩形AB、BC、CD、DA的中點,∴四邊形DFBH和四邊形CFAH為平行四邊形,∴DF∥BH,CH∥AF,∴四邊形HQFP是平行四邊形又HP=CH=DP=PF,∴平行四邊形HQFP是菱形,它的面積=S矩形ABCD=×4×6=6,∵FM∥BJ,CF=FB,∴CM=MJ,∴BJ=2FM=2a,∵EJ∥AN,AE=EB,∴BJ=JN=2a,∵S△HBC=?6?4=12,HJ=BH,∴S△HCJ=×12=,∵TN∥CJ,∴△HTN∽△HCJ,∴=()2=,∴S△HTN=×=,∴S陰=S菱形PHQF﹣2S△HTN=6﹣=,故答案為.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知矩形的性質(zhì)、菱形的判定與性質(zhì)及相似三角形的性質(zhì).16、4【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的長,得出OA長,然后由勾股定理求得OB的長即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案為:4.【點睛】此題考查了平行四邊形的性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.17、【解析】判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結(jié)合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.18、(1,5)16【分析】先將M、N兩點坐標分別求出,然后根據(jù)N點的移動規(guī)律得出M點的橫坐標向右移動2個單位長度,進一步即可求出M點坐標;根據(jù)二次函數(shù)圖像性質(zhì)我們可以推斷出MN平移到PQ掃過的陰影部分的面積等同于菱形MNQP,之后進一步求出相關(guān)面積即可.【詳解】由題意得:M點坐標為(-1,1),N點坐標為(1,-3),∵點Q橫坐標為3,∴N點橫坐標向右平移了2個單位長度,∴P點橫坐標為-1+2=1,∴P點縱坐標為:1+2+2=5,∴P點坐標為:(1,5),由題意得:Q點坐標為:(3,1),∴MQ平行于x軸,PN平行于Y軸,∴MQ⊥PN,∴四邊形MNQP為菱形,∴菱形MNQP面積=×MQ×PN=16,∴MN平移到PQ掃過的陰影部分的面積等于16,故答案為:(1,5),16.【點睛】本題主要考查了二次函數(shù)圖像的性質(zhì)及運用,熟練掌握相關(guān)概念是解題關(guān)鍵.三、解答題(共78分)19、(1);(2)或;(3)結(jié)論成立,理由見解析【分析】(1)設影子拋物線表達式是,先求出原拋物線的頂點坐標,代入,可求解;(2)設原拋物線表達式是,用待定系數(shù)法可求,,即可求解;(3)分別求出兩個拋物線的頂點坐標,即可求解.【詳解】解:(1)原拋物線表達式是原拋物線頂點是,設影子拋物線表達式是,將代入,解得,所以“影子拋物線”的表達式是;(2)設原拋物線表達式是,則原拋物線頂點是,將代入,得①,將代入,②,由①、②解得,.所以,原拋物線表達式是或;(3)結(jié)論成立.設影子拋物線表達式是.原拋物線于軸交點坐標為則兩條原拋物線可表示為與拋物線(其中、、、是常數(shù),且,由題意,可知兩個拋物線的頂點分別是、將、分別代入,得消去得,,,,、關(guān)于軸對稱.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的性質(zhì),二次函數(shù)的應用,理解“影子拋物線”的定義并能運用是本題的關(guān)鍵.20、-1.【分析】分別計算特殊角三角函數(shù)值和算術(shù)平方根,然后再計算加減法.【詳解】原式===-1.考點:實數(shù)的混合運算,特殊角的三角函數(shù)的混合運算.21、(1)見解析:(2)CE=1.【分析】(1)連接AD,如圖,先證明得到∠1=∠2,再根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到OD⊥EF,然后證明∠1=∠4得到結(jié)論;(2)連接BC交OD于F,如圖,根據(jù)圓周角定理得到∠ACB=90°,再根據(jù)垂徑定理,由得到OD⊥BC,則CF=BF,所以OF=AC=,從而得到DF=1,然后證明四邊形CEDF為矩形得CE=1.【詳解】(1)證明:連接AD,如圖,∵CD=BD,∴,∴∠1=∠2,∵AB為直徑,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF為切線,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:連接BC交OD于F,如圖,∵AB為直徑,∴∠ACB=90°,∵,∴OD⊥BC,∴CF=BF,∴OF=AC=,∴DF=﹣=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四邊形CEDF為矩形,∴CE=DF=1.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和勾股定理.22、(1)見解析;(2)【解析】(1)求三角形相似就要得出兩組對應的角相等,已知了∠BFE=∠C,根據(jù)等角的補角相等可得出∠ADE=∠AFB,根據(jù)AB∥CD可得出∠BAF=∠AED,這樣就構(gòu)成了兩三角形相似的條件.(2)根據(jù)(1)的相似三角形可得出關(guān)于AB,AE,AD,BF的比例關(guān)系,有了AD,AB的長,只需求出AE的長即可.可在直角三角形ABE中用勾股定理求出AE的長,這樣就能求出BF的長了.【詳解】(1)證明:在平行四邊形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴.∵△ABF∽△EAD,,..【點睛】本題主要考查了相似三角形的判定和性質(zhì),平行四邊形的性質(zhì),等角的補角,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.23、(1)AP=;(2).【分析】(1)先根據(jù)題意判斷出△O′PB是等腰直角三角形,由銳角三角函數(shù)的定義求出PB的長,進而可得出AP的長;(2)由題意根據(jù),直接進行分析計算即可.【詳解】解:(1)連接,,,是等腰直角三角形,,.(2)陰影部分的面積為.【點睛】本題考查的是扇形面積的計算及圖形旋轉(zhuǎn)的性質(zhì),解答此題的關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)進行分析作答.24、(1)①(6,),②(3,);(2)【分析】(1)①由四邊形OABC是矩形,根據(jù)矩形的性質(zhì),即可求得點B的坐標;②由正切函數(shù),即可求得∠CAO的度數(shù),③由三角函數(shù)的性質(zhì),即可求得點P的坐標;(2)分別從當0≤x≤3時,當3<x≤5時,當5<x≤9時,當x>9時去分析求解即可求得答案.【詳解】解:(1)①∵四邊形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴點B的坐標為:(6,2);②如圖1:當點Q與點A重合時,過點P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE=,∴OE=OA-AE=6-3=3,∴點P的坐標為(3,3);故答案為:①(6,2),②(3,3);(2)①當0≤x≤3時,如圖,OI=x,IQ=PI?tan60°=3,OQ=OI+IQ=3+x;由題意可知直線l∥BC∥OA,∴,∴EF=此時重疊部分是梯形,其面積為:S梯形=(EF+OQ)?OC=(3+x)∴.當3<x≤5時,如圖AQ=OIIOOA=x36=x3AH=(x3)S=S梯形﹣S△HAQ=S梯形﹣AH?AQ=(3+x)﹣∴.③當5<x≤9時,如圖∵CE∥DP∴∴∴S=(BE+OA)?OC=(12﹣)∴.④當x>9時,如圖∵AH∥PI∴∴∴S=OA?AH=.綜上:.【點睛】此題考查了矩形的性質(zhì),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年繁華商圈店鋪租賃合同3篇
- 2024年跨國保險業(yè)務分銷合同
- 2024年版:項目合作風險共擔協(xié)議
- 2024黃山旅游紀念品設計合同
- 2025年度大理石石材進出口貿(mào)易承包合同規(guī)范3篇
- 2024藝術(shù)品代理銷售與藝術(shù)品展覽策劃合同3篇
- 2024蔬菜產(chǎn)地直供與電商平臺合作意向協(xié)議書3篇
- 2025年度物業(yè)費收取與調(diào)整協(xié)議3篇
- 2024甲乙雙方共建智慧城市戰(zhàn)略合作合同
- 西南大學《特殊兒童運動康復》2023-2024學年第一學期期末試卷
- 2025年中聯(lián)重科公司發(fā)展戰(zhàn)略和經(jīng)營計劃
- Unit8 Chinese New Year 第一課時(說課稿)-2024-2025學年譯林版(三起)英語六年級上冊
- 半結(jié)構(gòu)化面試題100題
- 服裝廠班組長培訓
- 2024-2030年中國鋼結(jié)構(gòu)行業(yè)發(fā)展需求及投資規(guī)劃分析報告版
- 廣東省公立醫(yī)療機構(gòu)基本醫(yī)療服務價格項目修訂表
- 《激光原理及應用》全套課件
- 2022年河南省公務員錄用考試《行測》真題及答案解析
- 北京市海淀區(qū)2023-2024學年高三上學期期末考試+歷史 含答案
- 急診心律失常的治療
- 2024ESC心房顫動管理指南解讀
評論
0/150
提交評論