版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山西省運城市九年級數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列關(guān)于拋物線有關(guān)性質(zhì)的說法,正確的是()A.其圖象的開口向下 B.其圖象的對稱軸為C.其最大值為 D.當(dāng)時,隨的增大而減小2.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調(diào)整過來嗎?證明步驟正確的順序是()A.③②①④ B.②④①③ C.③①④② D.②③④①3.已知是一元二次方程的解,則的值為()A.-5 B.5 C.4 D.-44.如圖,在方格紙中,隨機選擇標(biāo)有序號①②③④⑤中的一個小正方形涂黑,與圖中陰影部分構(gòu)成軸對稱圖形的概率是()A. B. C. D.5.若關(guān)于的一元二次方程的一個根是,則的值是()A.1 B.0 C.-1 D.26.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差7.如圖,已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),點C是拋物線的頂點,且⊙C與y軸相切,點P為⊙C上一動點.若點D為PA的中點,連結(jié)OD,則OD的最大值是()A. B. C.2 D.8.已知(x2+y2)(x2+y2-1)-6=0,則x2+y2的值是()A.3或-2 B.-3或2 C.3 D.-29.已知⊙O的半徑是6,點O到直線l的距離為5,則直線l與⊙O的位置關(guān)系是A.相離 B.相切 C.相交 D.無法判斷10.一個小正方體沿著斜面前進了10米,橫截面如圖所示,已知,此時小正方體上的點距離地面的高度升高了()A.5米 B.米 C.米 D.米二、填空題(每小題3分,共24分)11.某校共1600名學(xué)生,為了解學(xué)生最喜歡的課外體育活動情況,學(xué)校隨機抽查了200名學(xué)生,其中有92名學(xué)生表示喜歡的項目是跳繩,據(jù)此估計全校喜歡跳繩這項體育活動的學(xué)生有____________人.12.圓心角為,半徑為2的扇形的弧長是_______.13.如圖,在△ABC中,∠C=90°,BC=6,AC=9,將△ABC平移使其頂點C位于△ABC的重心G處,則平移后所得三角形與原△ABC的重疊部分面積是_____.14.2018年10月21日,河間市詩經(jīng)國際馬拉松比賽拉開帷幕,電視臺動用無人機航拍技術(shù)全程錄像.如圖,是無人機觀測AB兩選手在某水平公路奔跑的情況,觀測選手A處的俯角為,選手B處的俯角為45o.如果此時無人機鏡頭C處的高度CD=20米,則AB兩選手的距離是_______米.15.一枚質(zhì)地均勻的正方體骰子,其六個面上分別刻有1、2、3、4、5、6六個數(shù)字,投擲這個骰子一次,則向上一面的數(shù)字小于3的概率是__________.16.如圖,在△ABC中,點A1,B1,C1分別是BC,AC,AB的中點,A2,B2,C2分別是B1C1,A1C1,A1B1的中點……依此類推,若△ABC的面積為1,則△AnBnCn的面積為__________.17.已知線段a=4,b=16,則a,b的比例中項線段的長是_______.18.如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點,過點作軸的平行線交拋物線于點.為拋物線的頂點.若直線交直線于點,且為線段的中點,則的值為_____.三、解答題(共66分)19.(10分)假期期間,甲、乙兩位同學(xué)到某影城看電影,影城有《我和我的祖國》(記為)、《中國機長》(記為)、《攀登者》(記為)三部電影,甲、乙兩位同學(xué)分別從中任選一部觀看,每部被選中的可能性相同.用樹狀圖或列表法求甲、乙兩位同學(xué)選擇同一部電影的概率.20.(6分)如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標(biāo)系中,△OAB的三個頂點O(0,0)、A(4,1)、B(4,4)均在格點上.(1)畫出△OAB繞原點順時針旋轉(zhuǎn)后得到的△,并寫出點的坐標(biāo);(2)在(1)的條件下,求線段在旋轉(zhuǎn)過程中掃過的扇形的面積.21.(6分)現(xiàn)如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;(2)求乙所拿的兩袋垃圾不同類的概率.22.(8分)如圖,∠MON=60°,OF平分∠MON,點A在射線OM上,P,Q是射線ON上的兩動點,點P在點Q的左側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交OM,OF,ON于點D,B,C,連接AB,PB.(1)依題意補全圖形;(2)判斷線段AB,PB之間的數(shù)量關(guān)系,并證明;(3)連接AP,設(shè),當(dāng)P和Q兩點都在射線ON上移動時,是否存在最小值?若存在,請直接寫出的最小值;若不存在,請說明理由.23.(8分)某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.請根據(jù)圖中信息,解決下列問題:(1)兩個班共有女生多少人?(2)將頻數(shù)分布直方圖補充完整;(3)求扇形統(tǒng)計圖中部分所對應(yīng)的扇形圓心角度數(shù);(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學(xué)校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.24.(8分)今年某市為創(chuàng)評“全國文明城市”稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.(1)該班男生“小剛被抽中”是事件,“小悅被抽中”是事件(填“不可能”或“必然”或“隨機”);第一次抽取卡片“小悅被抽中”的概率為;(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.25.(10分)若一條圓弧所在圓半徑為9,弧長為,求這條弧所對的圓心角.26.(10分)元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)拋物線的表達式中系數(shù)a的正負判斷開口方向和函數(shù)的最值問題,根據(jù)開口方向和對稱軸判斷函數(shù)增減性.【詳解】解:∵a=2>0,∴拋物線開口向上,故A選項錯誤;拋物線的對稱軸為直線x=3,故B選項錯誤;拋物線開口向上,圖象有最低點,函數(shù)有最小值,沒有最大值,故C選項錯誤;因為拋物線開口向上,所以在對稱軸左側(cè),即x<3時,y隨x的增大而減小,故D選項正確.故選:D.【點睛】本題考查二次函數(shù)圖象和性質(zhì),掌握圖象特征與系數(shù)之間的關(guān)系即數(shù)形結(jié)合思想是解答此題的關(guān)鍵.2、B【分析】根據(jù)相似三角形的判定定理,即可得到答案.【詳解】∵DE∥BC,∴∠B=∠ADE,∵DF∥AC,∴∠A=∠BDF,∴?ADE~?DBF.故選:B.【點睛】本題主要考查三角形相似的判定定理,掌握“有兩個角對應(yīng)相等的兩個三角形相似”是解題的關(guān)鍵.3、B【解析】根據(jù)方程的解的定義,把代入原方程即可.【詳解】把代入得:4-2b+6=0b=5故選:B【點睛】本題考查的是方程的解的定義,理解方程解的定義是關(guān)鍵.4、C【詳解】解:根據(jù)題意,在方格紙中,隨機選擇標(biāo)有序號①②③④⑤中的一個小正方形涂黑,共有5種等可能的結(jié)果,使與圖中陰影部分構(gòu)成軸對稱圖形的有②④⑤,3種情況,因此可知使與圖中陰影部分構(gòu)成軸對稱圖形的概率為故選C5、B【分析】根據(jù)一元二次方程的解的定義,把x=1代入一元二次方程可得到關(guān)于m的一元一次方程,然后解一元一次方程即可.【詳解】把x=1代入x2-x+m=1得1-1+m=1,解得m=1.故選B.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.6、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.7、B【分析】取點H(6,0),連接PH,由待定系數(shù)法可求拋物線解析式,可得點C坐標(biāo),可得⊙C半徑為4,由三角形中位線的定理可求OD=PH,當(dāng)點C在PH上時,PH有最大值,即可求解.【詳解】如圖,取點H(6,0),連接PH,∵拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),∴,解得:,∴拋物線解析式為:y=﹣,∴頂點C(﹣3,4),∴⊙C半徑為4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大時,OD有最大值,∴當(dāng)點C在PH上時,PH有最大值,∴PH最大值為=3+=3+,∴OD的最大值為:,故選B.【點睛】本題主要考查了切線的性質(zhì),二次函數(shù)的性質(zhì),三角形中位線定理等知識,解決本題的關(guān)鍵是要熟練掌握二次函數(shù)性質(zhì)和三角形中位線的性質(zhì).8、C【分析】設(shè)m=x2+y2,則有,求出m的值,結(jié)合x2+y20,即可得到答案.【詳解】解:根據(jù)題意,設(shè)m=x2+y2,∴原方程可化為:,∴,解得:或;∵,∴,∴;故選:C.【點睛】本題考查了換元法求一元二次方程,解題的關(guān)鍵是熟練掌握解一元二次方程的方法和步驟.9、C【解析】試題分析:根據(jù)直線與圓的位置關(guān)系來判定:①直線l和⊙O相交,則d<r;②直線l和⊙O相切,則d=r;③直線l和⊙O相離,則d>r(d為直線與圓的距離,r為圓的半徑).因此,∵⊙O的半徑為6,圓心O到直線l的距離為5,∴6>5,即:d<r.∴直線l與⊙O的位置關(guān)系是相交.故選C.10、B【分析】根據(jù)題意,用未知數(shù)設(shè)出斜面的鉛直高度和水平寬度,再運用勾股定理列方程求解.【詳解】解:Rt△ABC中,AB=2BC,
設(shè)BC=x,則AC=2x,
根據(jù)勾股定理可得,
x2+(2x)2=102,
解得x=或x=(負值舍去),即小正方體上的點N距離地面AB的高度升高了米,
故選:B.【點睛】此題主要考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是熟練運用勾股定理的知識,此題比較簡單.二、填空題(每小題3分,共24分)11、736【分析】由題意根據(jù)樣本數(shù)據(jù)的比值和相對應(yīng)得總體數(shù)據(jù)比值相同進行分析求解即可.【詳解】解:設(shè)全校喜歡跳繩這項體育活動的學(xué)生有m人,由題意可得:,解得.所以全校喜歡跳繩這項體育活動的學(xué)生有736人.故答案為:736.【點睛】本題考查的是通過樣本去估計總體對應(yīng)的數(shù)據(jù),熟練掌握通過樣本去估計總體對應(yīng)數(shù)據(jù)的方法是解題的關(guān)鍵.12、【分析】利用弧長公式進行計算.【詳解】解:故答案為:【點睛】本題考查弧長的計算,掌握公式正確計算是本題的解題關(guān)鍵.13、3【詳解】由三角形的重心是三角形三邊中線的交點,根據(jù)中心的性質(zhì)可得,G是將AB邊上的中線分成2:1兩個部分,所以重合部分的三角形與原三角形的相似比是1:3,所以重合部分的三角形面積與原三角形的面積比是1:9,因為原三角形的面積是所以27,所以重合部分三角形面積是3,故答案為:3.14、【分析】在兩個直角三角形中,都是知道已知角和對邊,根據(jù)正切函數(shù)求出鄰邊后,相加求和即可;【詳解】由已知可得,,CD=20,∵于點D,∴在中,,,∴,在中,,,∴,∴.故答案為.【點睛】本題主要考查了解直角三角形的應(yīng)用,準(zhǔn)確理解和計算是解題的關(guān)鍵.15、【分析】利用公式直接計算.【詳解】解:這六個數(shù)字中小于3的有1和2兩種情況,則P(向上一面的數(shù)字小于3)=.故答案為:【點睛】本題考查概率的計算.16、【分析】由于、、分別是的邊、、的中點,就可以得出△,且相似比為,就可求出△,同樣地方法得出△依此類推所以就可以求出的值.【詳解】解:、、分別是的邊、、的中點,、、是的中位線,△,且相似比為,,且,、、分別是△的邊、、的中點,△的△且相似比為,,依此類推,.故答案為:.【點睛】本題考查了三角形中位線定理的運用,相似三角形的判定與性質(zhì)的運用,解題的關(guān)鍵是有相似三角形的性質(zhì):面積比等于相似比的平方.17、1【分析】設(shè)線段a,b的比例中項為c,根據(jù)比例中項的定義可得c2=ab,代入數(shù)據(jù)可直接求出c的值,注意兩條線段的比例中項為正數(shù).【詳解】解:設(shè)線段a,b的比例中項為c,∵c是長度分別為4、16的兩條線段的比例中項,∴c2=ab=4×16,∴c2=64,∴c=1或-1(負數(shù)舍去),∴a、b的比例中項為1;故答案為:1.【點睛】本題主要考查了比例線段.掌握比例中項的定義,是解題的關(guān)鍵.18、2【解析】先根據(jù)拋物線解析式求出點坐標(biāo)和其對稱軸,再根據(jù)對稱性求出點坐標(biāo),利用點為線段中點,得出點坐標(biāo);用含的式子表示出點坐標(biāo),寫出直線的解析式,再將點坐標(biāo)代入即可求解出的值.【詳解】解:∵拋物線與軸交于點,∴,拋物線的對稱軸為∴頂點坐標(biāo)為,點坐標(biāo)為∵點為線段的中點,∴點坐標(biāo)為設(shè)直線解析式為(為常數(shù),且)將點代入得∴將點代入得解得故答案為:2【點睛】考核知識點:拋物線與坐標(biāo)軸交點問題.數(shù)形結(jié)合分析問題是關(guān)鍵.三、解答題(共66分)19、,見解析【分析】列表法展示所有等可能的結(jié)果數(shù),找出甲、乙選擇同1部電影的結(jié)果數(shù),然后利用概率公式求解.【詳解】解:列表如下:由表可知,共有9種等可能結(jié)果,其中選擇同一部電影的結(jié)果為3種,∴(他們選擇同一部電影).【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.20、(1)圖見解析,點A1坐標(biāo)是(1,-4);(2)【分析】(1)據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B繞點O按照順時針旋轉(zhuǎn)90°后的對應(yīng)點A1、B1的位置,然后順次O、A1、B1連接即可,再根據(jù)平面直角坐標(biāo)系寫出A1點的坐標(biāo);(2)利用扇形的面積公式求解即可,利用網(wǎng)格結(jié)構(gòu)可得出.【詳解】(1)點A1坐標(biāo)是(1,-4)(2)根據(jù)題意可得出:∴線段在旋轉(zhuǎn)過程中掃過的扇形的面積為:.【點睛】本題考查的知識點是旋轉(zhuǎn)變換以及扇形的面積公式,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對應(yīng)點的位置是解題的關(guān)鍵.21、(1);(2).【分析】(1)共四種垃圾,廚余垃圾一種,所以甲拿了一袋垃圾恰好廚余垃圾的概率為:;(2)直接畫出樹狀圖,利用樹狀圖解題即可【詳解】解:(1)記可回收物、廚余垃圾、有害垃圾、其它垃圾分別為A,B,C,D,∵垃圾要按A,B,C、D類分別裝袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B類:廚余垃圾的概率為:;(2)畫樹狀圖如下:由樹狀圖知,乙拿的垃圾共有16種等可能結(jié)果,其中乙拿的兩袋垃圾不同類的有12種結(jié)果,所以乙拿的兩袋垃圾不同類的概率為【點睛】本題考查概率的計算以及樹狀圖算概率,掌握樹狀圖法是解題關(guān)鍵22、(1)補全圖形見解析;(2)AB=PB.證明見解析;(3)存在,.【分析】(1)根據(jù)題意補全圖形如圖1,
(2)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問題;
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出,由∠AOB=30°,推出當(dāng)BA⊥OM時,的值最小,最小值為,由此即可解決問題.【詳解】解:(1)如圖1,
(2)AB=PB.證明:如圖,連接BQ.∵BC的垂直平分OQ,∴OB=BQ,∴∠BOP=∠BQP.又∵OF平分∠MON,∴∠AOB=∠BOP.∴∠AOB=∠BQP.又∵PQ=OA,∴△AOB≌△PQB,∴AB=PB.(3))∵△AOB≌△PQB,
∴∠OAB=∠BPQ,
∵∠OPB+∠BPQ=180°,
∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,
∵∠MON=60°,
∴∠ABP=120°,
∵BA=BP,
∴∠BAP=∠BPA=30°,
∵BO=BQ,
∴∠BOQ=∠BQO=30°,
∴△ABP∽△OBQ,
∴,
∵∠AOB=30°,
∴當(dāng)BA⊥OM時,的值最小,最小值為,
∴k=.【點睛】本題是三角形綜合題,考查了全等三角形的判定和性質(zhì),角平分線的性質(zhì),等腰三角形的性質(zhì),直角三角形的性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題.23、(1)50;(2)詳見解析;(3);(4)【分析】(1)根據(jù)D的人數(shù)除以所占的百分比即可的總?cè)藬?shù);(2)根據(jù)C的百分比乘以總?cè)藬?shù),可得C的人數(shù),再根據(jù)總?cè)藬?shù)減去A、B、C、D、F,便可計算的E的人數(shù),分別在直方圖上表示即可.(3)根據(jù)直方圖上E的人數(shù)比總?cè)藬?shù)即可求得的E百分比,再計算出圓心角即可.(4)畫樹狀圖統(tǒng)計總數(shù)和來自同一班級的情況,再計算概率即可.【詳解】解:(1)總?cè)藬?shù)為人,答:兩個班共有女生50人;(2)C部分對應(yīng)的人數(shù)為人,部分所對應(yīng)的人數(shù)為;頻數(shù)分布直方圖補充如下:(3)扇形統(tǒng)計圖中部分所對應(yīng)的扇形圓心角度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025樁基礎(chǔ)工程分包合同
- 2025年個人房屋租賃合同范本22
- 2025保潔人員勞動合同范本
- 2025年碳酸乙烯酯項目提案報告模范
- 2025年工程機械專用油項目立項申請報告模范
- 工業(yè)設(shè)備更新項目可行性研究報告-2025年超長期特別國債支持重點領(lǐng)域
- 2025年稀土鋁合金、銅合金材料項目規(guī)劃申請報告
- 2025年機頂盒項目提案報告
- 2025勞動合同法與勞動法及現(xiàn)行法規(guī)政策的主要區(qū)別
- 2025年錐蟲焦蟲病防治藥項目提案報告
- 暑假作業(yè) 11 高二英語語法填空20篇(原卷版)-【暑假分層作業(yè)】2024年高二英語暑假培優(yōu)練(人教版2019)
- 2024年江西省南昌市南昌縣中考一模數(shù)學(xué)試題(含解析)
- 繪本的分鏡設(shè)計-分鏡的編排
- 查干淖爾一號井環(huán)評
- 體檢中心分析報告
- 人教版初中英語七八九全部單詞(打印版)
- 臺球運動中的理論力學(xué)
- 最高人民法院婚姻法司法解釋(二)的理解與適用
- 關(guān)于醫(yī)保應(yīng)急預(yù)案
- 新人教版五年級上冊數(shù)學(xué)應(yīng)用題大全doc
- 2022年中國止血材料行業(yè)概覽:發(fā)展現(xiàn)狀對比分析研究報告(摘要版) -頭豹
評論
0/150
提交評論