




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省開封市尉氏縣2025屆九年級數(shù)學第一學期期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.在平面直角坐標系xOy中,若點P的橫坐標和縱坐標相等,則稱點P為完美點.已知二次函數(shù)的圖象上有且只有一個完美點,且當時,函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是()A. B. C. D.2.如圖,已知在△ABC中,P為AB上一點,連接CP,以下條件中不能判定△ACP∽△ABC的是()A. B. C. D.3.已知點A、B、C、D、E、F是半徑為r的⊙O的六等分點,分別以A、D為圓心,AE和DF長為半徑畫圓弧交于點P.以下說法正確的是()①∠PAD=∠PDA=60o;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④4.如圖所示,某公園設(shè)計節(jié)日鮮花擺放方案,其中一個花壇由一批花盆堆成六角垛,頂層一個,以下各層堆成六邊形,逐層每邊增加一個花盆,則第七層的花盆的個數(shù)是()A.91 B.126 C.127 D.1695.在平面直角坐標系中,點(﹣3,2)關(guān)于原點對稱的點是()A.(2,﹣3) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)6.已知圓錐的底面半徑為5,母線長為13,則這個圓錐的全面積是()A. B. C. D.7.如圖所示,拋物線的頂點為,與軸的交點在點和之間,以下結(jié)論:①;②;③;④.其中正確的是()A.①② B.③④ C.②③ D.①③8.在中,,,則的值是()A. B. C. D.9.從1到9這9個自然數(shù)中任取一個,是偶數(shù)的概率是()A. B. C. D.10.如圖,在中,,已知,把沿軸負方向向左平移到的位置,此時在同一雙曲線上,則的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.對一批防PM2.5口罩進行抽檢,經(jīng)統(tǒng)計合格口罩的概率是0.9,若這批口罩共有2000只,則其中合格的大約有__只.12.如圖,在平面直角坐標系中,點A,B,C都在格點上,過A,B,C三點作一圓弧,則圓心的坐標是_____.13.拋物線y=(x-1)2-7的對稱軸為直線_________.14.如圖,在軸的正半軸上依次截取……,過點、、、、……,分別作軸的垂線與反比例函數(shù)的圖象相交于點、、、、……,得直角三角形、,,,……,并設(shè)其面積分別為、、、、……,則__.的整數(shù)).15.若A(7,y1),B(5,y2),都是反比例函數(shù)的圖象上的點,則y1_____y2(填“<”、”﹣”或”>”).16.如圖,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足為點D,如果BC=4,sin∠DBC=,那么線段AB的長是_____.17.一元二次方程(x﹣1)2=1的解是_____.18.如圖,正方形ABCD中,P為AD上一點,BP⊥PE交BC的延長線于點E,若AB=6,AP=4,則CE的長為_____.三、解答題(共66分)19.(10分)一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:x3000320035004000y100969080(1)觀察表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數(shù)式填表:租出的車輛數(shù)未租出的車輛數(shù)租出每輛車的月收益所有未租出的車輛每月的維護費(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.20.(6分)如圖,是的直徑,是弦,是弧的中點,過點作的切線交的延長線于點,過點作于點,交于點.(1)求證:;(2)若,,求的長.21.(6分)如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.(1)試說明四邊形EFCG是矩形;(2)當圓O與射線BD相切時,點E停止移動,在點E移動的過程中,①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;②求點G移動路線的長.22.(8分)總公司將一批襯衫由甲、乙兩家分店共同銷售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.經(jīng)調(diào)查發(fā)現(xiàn),每件襯杉每降價1元,甲、乙兩家店一天都可多售出2件.設(shè)甲店每件襯衫降價a元時,一天可盈利y1元,乙店每件襯衫降價b元時,一天可盈利y2元.(1)當a=5時,求y1的值.(2)求y2關(guān)于b的函數(shù)表達式.(3)若總公司規(guī)定兩家分店下降的價格必須相同,請求出每件襯衫下降多少元時,兩家分店一天的盈利和最大,最大是多少元?23.(8分)已知反比例函數(shù)的圖像經(jīng)過點(2,-3).(1)求這個函數(shù)的表達式.(2)點(-1,6),(3,2)是否在這個函數(shù)的圖像上?(3)這個函數(shù)的圖像位于哪些象限?函數(shù)值y隨自變量的增大如何變化?24.(8分)如圖,在四邊形ABCD中,AB∥CD,AB=AD,對角線AC、BD交于點O,AC平分∠BAD.求證:四邊形ABCD為菱形.25.(10分)探究問題:⑴方法感悟:如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.感悟解題方法,并完成下列填空:將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,點G,B,F(xiàn)在同一條直線上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_______.∴_________=EF,故DE+BF=EF.⑵方法遷移:如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.⑶問題拓展:如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).26.(10分)如圖,Rt△ABC中,∠B=90°,點D在邊AC上,且DE⊥AC交BC于點E.(1)求證:△CDE∽△CBA;(2)若AB=3,AC=5,E是BC中點,求DE的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)完美點的概念令ax2+4x+c=x,即ax2+3x+c=0,由題意方程有兩個相等的實數(shù)根,求得4ac=9,再根據(jù)方程的根為=,從而求得a=-1,c=-,所以函數(shù)y=ax2+4x+c-=-x2+4x-3,根據(jù)函數(shù)解析式求得頂點坐標與縱坐標的交點坐標,根據(jù)y的取值,即可確定x的取值范圍.【詳解】解:令ax2+4x+c=x,即ax2+3x+c=0,
由題意,△=32-4ac=0,即4ac=9,
又方程的根為=,
解得a=-1,c=-,
故函數(shù)y=ax2+4x+c-=-x2+4x-3,
如圖,該函數(shù)圖象頂點為(2,1),與y軸交點為(0,-3),由對稱性,該函數(shù)圖象也經(jīng)過點(4,-3).由于函數(shù)圖象在對稱軸x=2左側(cè)y隨x的增大而增大,在對稱軸右側(cè)y隨x的增大而減小,且當0≤x≤m時,函數(shù)y=-x2+4x-3的最小值為-3,最大值為1,
∴2≤m≤4,
故選:C.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質(zhì)以及根的判別式等知識,利用分類討論以及數(shù)形結(jié)合的數(shù)學思想得出是解題關(guān)鍵.2、C【分析】A、加一公共角,根據(jù)兩角對應(yīng)相等的兩個三角形相似可以得結(jié)論;B、加一公共角,根據(jù)兩角對應(yīng)相等的兩個三角形相似可以得結(jié)論;C、其夾角不相等,所以不能判定相似;D、其夾角是公共角,根據(jù)兩邊的比相等,且夾角相等,兩三角形相似.【詳解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此選項的條件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此選項的條件可以判定△ACP∽△ABC;C、∵,當∠ACP=∠B時,△ACP∽△ABC,所以此選項的條件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此選項的條件可以判定△ACP∽△ABC,本題選擇不能判定△ACP∽△ABC的條件,故選C.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定方法是關(guān)鍵.3、C【解析】解:∵A、B、C、D、E、F是半徑為r的⊙O的六等分點,∴,∴AE=DF<AD,根據(jù)題意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①錯誤;連接OP、AE、DE,如圖所示,∵AD是⊙O的直徑,∴AD>AE=AP,②△PAO≌△ADE錯誤,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正確;∵AO:OP:PA=r:r:r=1::.∴④正確;說法正確的是③④,故選C.4、C【分析】由圖形可知:第一層有1個花盆,第二層有1+6=7個花盆,第三層有1+6+12=19個花盆,第四層有1+6+12+18=37個花盆,…第n層有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)個花盆,要求第7層個數(shù),由此代入求得答案即可.【詳解】解:∵第一層有1個花盆,
第二層有1+6=7個花盆,
第三層有1+6+12=19個花盆,
第四層有1+6+12+18=37個花盆,
…
∴第n層有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)個花盆,
∴當n=7時,
∴花盆的個數(shù)是1+3×7×(7-1)=1.
故選:C.【點睛】此題考查圖形的變化規(guī)律,解題關(guān)鍵在于找出數(shù)字之間的運算規(guī)律,利用規(guī)律解決問題.5、D【詳解】解:由兩個點關(guān)于原點對稱,則橫、縱坐標都是原數(shù)的相反數(shù),得點(﹣3,2)關(guān)于原點對稱的點是(3,﹣2).故選D.【點睛】本題考查關(guān)于原點對稱的點的坐標.6、B【分析】先根據(jù)圓錐側(cè)面積公式:求出圓錐的側(cè)面積,再加上底面積即得答案.【詳解】解:圓錐的側(cè)面積=,所以這個圓錐的全面積=.故選:B.【點睛】本題考查了圓錐的有關(guān)計算,屬于基礎(chǔ)題型,熟練掌握圓錐側(cè)面積的計算公式是解答的關(guān)鍵.7、B【分析】根據(jù)二次函數(shù)的圖象可逐項判斷求解即可.【詳解】解:拋物線與x軸有兩個交點,
∴△>0,
∴b2?4ac>0,故①錯誤;
由于對稱軸為x=?1,
∴x=?3與x=1關(guān)于x=?1對稱,
∵x=?3,y<0,
∴x=1時,y=a+b+c<0,故②錯誤;
∵對稱軸為x=?=?1,
∴2a?b=0,故③正確;
∵頂點為B(?1,3),
∴y=a?b+c=3,
∴y=a?2a+c=3,
即c?a=3,故④正確,
故選B.【點睛】本題考查拋物線的圖象與性質(zhì),解題的關(guān)鍵是熟練運用拋物線的圖象與性質(zhì),本題屬于中等題型.8、C【分析】作出圖形,設(shè)BC=2k,AB=5k,利用勾股定理列式求出AC,再根據(jù)銳角的正弦等于對邊比斜邊,列式即可得解.【詳解】解:如圖,∴設(shè)BC=2k,AB=5k,∴由勾股定理得∴故選C.【點睛】本題考查了銳角三角函數(shù)的定義,利用“設(shè)k法”表示出三角形的三邊求解更加簡便.9、B【解析】∵在1到9這9個自然數(shù)中,偶數(shù)共有4個,∴從這9個自然數(shù)中任取一個,是偶數(shù)的概率為:.故選B.10、C【分析】作CN⊥x軸于點N,根據(jù)證明,求得點C的坐標;設(shè)△ABC沿x軸的負方向平移c個單位,用c表示出和,根據(jù)兩點都在反比例函數(shù)圖象上,求出k的值,即可求出反比例函數(shù)的解析式.【詳解】作CN⊥軸于點N,
∵A(2,0)、B(0,1).
∴AO=2,OB=1,∵,∴,
在和中,∴,∴,
又∵點C在第一象限,
∴C(3,2);設(shè)△ABC沿軸的負方向平移c個單位,
則,則,
又點和在該比例函數(shù)圖象上,
把點和的坐標分別代入,得,
解得:,∴,
故選:C.【點睛】本題是反比例函數(shù)與幾何的綜合題,涉及的知識有:全等三角形的判定與性質(zhì),勾股定理,坐標與圖形性質(zhì),利用待定系數(shù)法求函數(shù)解析式,平移的性質(zhì).二、填空題(每小題3分,共24分)11、1.【分析】用這批口罩的只數(shù)×合格口罩的概率,列式計算即可得到合格的只數(shù).【詳解】2000×0.9=2000×0.9=1(只).故答案為:1.【點睛】本題主要考查了用樣本估計總體,生產(chǎn)中遇到的估算產(chǎn)量問題,通常采用樣本估計總體的方法.12、(2,1)【分析】根據(jù)垂徑定理的推論:弦的垂直平分線必過圓心,可以作弦AB和BC的垂直平分線,交點即為圓心.【詳解】根據(jù)垂徑定理的推論:弦的垂直平分線必過圓心,可以作弦AB和BC的垂直平分線,交點即為圓心.如圖所示,則圓心是(2,1).故答案為:(2,1).【點睛】本題考查垂徑定理的應(yīng)用,解答此題的關(guān)鍵是熟知垂徑定理,即“垂直于弦的直徑平分弦”.13、x=1【分析】根據(jù)拋物線y=a(x-h)2+k的對稱軸是x=h即可確定所以拋物線y=(x-1)2-7的對稱軸.【詳解】解:∵y=(x-1)2-7
∴對稱軸是x=1
故填空答案:x=1.【點睛】本題主要考查了二次函數(shù)的性質(zhì),熟記二次函數(shù)的對稱軸,頂點坐標是解答此題的關(guān)鍵.14、【解析】根據(jù)反比例函數(shù)y=中k的幾何意義再結(jié)合圖象即可解答.【詳解】∵過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義.15、<【分析】先根據(jù)反比例函數(shù)中k>0判斷出函數(shù)圖象所在的象限及增減性,再根據(jù)各點橫坐標的特點即可得出結(jié)論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴函數(shù)圖象的兩個分支分別位于一、三象限,且在每一象限內(nèi)y隨x的增大而減?。?>5,∴y1<y1.故答案為:<.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的增減性與比例系數(shù)k的符號之間的關(guān)系是關(guān)鍵.16、2.【分析】在中,根據(jù)直角三角形的邊角關(guān)系求出CD,根據(jù)勾股定理求出BD,在在中,再求出AB即可.【詳解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案為:2.【點睛】考查直角三角形的邊角關(guān)系,勾股定理等知識,在不同的直角三角形中利用合適的邊角關(guān)系式正確解答的關(guān)鍵.17、x=2或0【分析】根據(jù)一元二次方程的解法即可求出答案.【詳解】解:∵(x﹣1)2=1,∴x﹣1=±1,∴x=2或0故答案為:x=2或0【點睛】本題主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p?0)的一元二次方程可采用直接開平方的方法解一元二次方程.18、2【分析】利用同角的余角相等可得出∠ABP=∠DPF,結(jié)合∠A=∠D可得出△APB∽△DFP,利用相似三角形的性質(zhì)可求出DF的長,進而可得出CF的長,由∠PFD=∠EFC,∠D=∠ECF可得出△PFD∽△EFC,再利用相似三角形的性質(zhì)可求出CE的長.【詳解】∵四邊形ABCD為正方形,∴∠A=∠D=∠ECF=90°,AB=AD=CD=6,∴DP=AD﹣AP=1.∵BP⊥PE,∴∠BPE=90°,∴∠APB+∠DPF=90°.∵∠APB+∠ABP=90°,∴∠ABP=∠DPF.又∵∠A=∠D,∴△APB∽△DFP,∴,即,∴DF=,∴CF=.∵∠PFD=∠EFC,∠D=∠ECF,∴△PFD∽△EFC,∴=,即,∴CE=2.故答案為:2.【點睛】此題考查相似三角形判定與性質(zhì)以及正方形的性質(zhì),利用相似三角形的判定定理,找出△APB∽△DFP及△PFD∽△EFC是解題的關(guān)鍵.三、解答題(共66分)19、(1)y與x間的函數(shù)關(guān)系是.(2)填表見解析;(3)當每輛車的月租金為4050元時,公司獲得最大月收益307050元【解析】(1)判斷出y與x的函數(shù)關(guān)系為一次函數(shù)關(guān)系,再根據(jù)待定系數(shù)法求出函數(shù)解析式.(2)根據(jù)題意可用代數(shù)式求出出租車的輛數(shù)和未出租車的輛數(shù)即可.(3)租出的車的利潤減去未租出車的維護費,即為公司最大月收益.【詳解】解:(1)由表格數(shù)據(jù)可知y與x是一次函數(shù)關(guān)系,設(shè)其解析式為,將(3000,100),(3200,96)代入得,解得:.∴.將(3500,90),(4000,80)代入檢驗,適合.∴y與x間的函數(shù)關(guān)系是.(2)填表如下:租出的車輛數(shù)未租出的車輛數(shù)租出每輛車的月收益所有未租出的車輛每月的維護費(3)設(shè)租賃公司獲得的月收益為W元,依題意可得:當x=4050時,Wmax=307050,∴當每輛車的月租金為4050元時,公司獲得最大月收益307050元20、(1)見解析;(2)【分析】(1)連接OC,交AE于點H.根據(jù)垂徑定理得到OC⊥AE.根據(jù)切線的性質(zhì)得到OC⊥GC,于是得到結(jié)論;
(2)根據(jù)三角函數(shù)的定義得到sin∠OCD=.連接BE.AB是⊙O的直徑,解直角三角形即可得到結(jié)論.【詳解】(1)證明:連接,交于點.是弧的中點,是的切線,,,;(2),,..在中,,,連接是的直徑,.在中,,,在Rt△AEB中,,AB=10,.【點睛】本題考查了切線的性質(zhì),三角函數(shù)的定義,平行線的判定,正確的作出輔助線是解題的關(guān)鍵.21、(1)證明見解析;(2)①存在,矩形EFCG的面積最大值為12,最小值為;②.【解析】試題分析:(1)只要證到三個內(nèi)角等于90°即可.(2)①易證點D在⊙O上,根據(jù)圓周角定理可得∠FCE=∠FDE,從而證到△CFE∽△DAB,根據(jù)相似三角形的性質(zhì)可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范圍就可求出S矩形ABCD的范圍.②根據(jù)圓周角定理和矩形的性質(zhì)可證到∠GDC=∠FDE=定值,從而得到點G的移動的路線是線段,只需找到點G的起點與終點,求出該線段的長度即可.試題解析:解:(1)證明:如圖,∵CE為⊙O的直徑,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四邊形EFCG是矩形.(2)①存在.如答圖1,連接OD,∵四邊形ABCD是矩形,∴∠A=∠ADC=90°.∵點O是CE的中點,∴OD=OC.∴點D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.∵AD=1,AB=2,∴BD=5.∴.∴S矩形ABCD=2S△CFE=.∵四邊形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.當點E在點A(E′)處時,點F在點B(F′)處,點G在點D(G′處,如答圖1所示.此時,CF=CB=1.Ⅱ.當點F在點D(F″)處時,直徑F″G″⊥BD,如答圖2所示,此時⊙O與射線BD相切,CF=CD=2.Ⅲ.當CF⊥BD時,CF最小,此時點F到達F″′,如答圖2所示.S△BCD=BC?CD=BD?CF″′.∴1×2=5×CF″′.∴CF″′=.∴≤CF≤1.∵S矩形ABCD=,∴,即.∴矩形EFCG的面積最大值為12,最小值為.②∵∠GDC=∠FDE=定值,點G的起點為D,終點為G″,∴點G的移動路線是線段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴,即,解得.∴點G移動路線的長為.考點:1.圓的綜合題;2.單動點問題;2.垂線段最短的性質(zhì);1.直角三角形斜邊上的中線的性質(zhì);5.矩形的判定和性質(zhì);6.圓周角定理;7.切線的性質(zhì);8.相似三角形的判定和性質(zhì);9.分類思想的應(yīng)用.22、(1)a=5時,y1的值是1050;(2)y2=﹣2b2+28b+960;(3)每件襯衫下降11元時,兩家分店一天的盈利和最大,最大是2244元.【分析】(1)根據(jù)題意,可以寫出y1與a的函數(shù)關(guān)系式,然后將a=5代入函數(shù)解析式,即可求得相應(yīng)的y1值;(2)根據(jù)題意,可以寫出y2關(guān)于b的函數(shù)表達式;(3)根據(jù)題意可以寫出利潤與所降價格的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)即可得到每件襯衫下降多少元時,兩家分店一天的盈利和最大,最大是多少元.【詳解】解:(1)由題意可得,y1=(40﹣a)(20+2a),當a=5時,y1=(40﹣5)×(20+2×5)=1050,即當a=5時,y1的值是1050;(2)由題意可得,y2=(30﹣b)(32+2b)=﹣2b2+28b+960,即y2關(guān)于b的函數(shù)表達式為y2=﹣2b2+28b+960;(3)設(shè)兩家下降的價格都為x元,兩家的盈利和為w元,w=(40﹣x)(20+2x)+(﹣2x2+28x+960)=﹣4x2+88x+1760=﹣4(x﹣11)2+2244,∴當x=11時,w取得最大值,此時w=2244,答:每件襯衫下降11元時,兩家分店一天的盈利和最大,最大是2244元.【點睛】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,寫出相應(yīng)的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)解答.23、(1)y=-;(2)(-1,6)在函數(shù)圖像上,(3,2)不在函數(shù)圖像上;(3)二、四象限,在每個象限內(nèi),y隨x的增大而增大.【分析】(1)根據(jù)待定系數(shù)法求得即可;(2)根據(jù)圖象上點的坐標特征,把點(﹣1,6),(3,2)代入解析式即可判斷;(3)根據(jù)反比例函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】(1)設(shè)反比例函數(shù)的解析式為y(k≠0).∵反比例函數(shù)的圖象經(jīng)過點(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函數(shù)的表達式y(tǒng);(2)把x=﹣1代入y得:y=6,把x=3代入y得:y=﹣2≠2,∴點(﹣1,6)在函數(shù)圖象上,點(3,2)不在函數(shù)圖象上.(3)∵k=﹣6<0,∴雙曲線在二、四象限,在每個象限內(nèi)y隨x的增大而增大.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點的坐標特征,熟練掌握待定系數(shù)法以及反比例函數(shù)的性質(zhì)是解答本題的關(guān)鍵.24、詳見解析.【分析】先判斷出∠OAB=∠DC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 懷化學院《應(yīng)用商務(wù)英語》2023-2024學年第二學期期末試卷
- 鄭州財稅金融職業(yè)學院《經(jīng)貿(mào)英語閱讀》2023-2024學年第二學期期末試卷
- 湖南水利水電職業(yè)技術(shù)學院《畫法幾何及工程制圖》2023-2024學年第二學期期末試卷
- 山東信息職業(yè)技術(shù)學院《綜合商務(wù)英語(3)》2023-2024學年第二學期期末試卷
- 吉首大學《針灸推拿技術(shù)》2023-2024學年第二學期期末試卷
- 湖北中醫(yī)藥高等??茖W?!都痹\醫(yī)學Ⅰ》2023-2024學年第二學期期末試卷
- 房地產(chǎn)代理交易合同
- 水泥運輸合同書
- 單位臨時工雇傭勞務(wù)合同
- 寒暑假工勞務(wù)合同
- 卷簾門加工制作及安裝合同協(xié)議書范本模板
- 儲氣罐使用注意事項培訓
- 醫(yī)務(wù)科依法執(zhí)業(yè)自查表
- 七年級心理健康期末考試試卷(含答案)
- 掃雷游戲課件
- 短視頻編輯與制作全套教學課件
- 小學語文教學技能PPT完整全套教學課件
- 初中歷史課件:中國古代科技發(fā)展史
- 垃圾焚燒發(fā)電環(huán)境影響評價報告書
- 生產(chǎn)車間5S稽核評分表
- cmk 設(shè)備能力分析計數(shù)表格
評論
0/150
提交評論