2023-2024學(xué)年貴州省貴陽(yáng)市名校中考一模數(shù)學(xué)試題含解析_第1頁(yè)
2023-2024學(xué)年貴州省貴陽(yáng)市名校中考一模數(shù)學(xué)試題含解析_第2頁(yè)
2023-2024學(xué)年貴州省貴陽(yáng)市名校中考一模數(shù)學(xué)試題含解析_第3頁(yè)
2023-2024學(xué)年貴州省貴陽(yáng)市名校中考一模數(shù)學(xué)試題含解析_第4頁(yè)
2023-2024學(xué)年貴州省貴陽(yáng)市名校中考一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年貴州省貴陽(yáng)市名校中考一模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為()A.2 B.2 C.3 D.2.小軍旅行箱的密碼是一個(gè)六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.3.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點(diǎn)D,交BC于點(diǎn)E,則△ACE的周長(zhǎng)為()A.2+ B.2+2 C.4 D.34.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.5.如圖1是某生活小區(qū)的音樂噴泉,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,其中一個(gè)噴水管噴水的最大高度為3m,此時(shí)距噴水管的水平距離為1m,在如圖2所示的坐標(biāo)系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.6.如圖,將一正方形紙片沿圖(1)、(2)的虛線對(duì)折,得到圖(3),然后沿圖(3)中虛線的剪去一個(gè)角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.7.在如圖所示的數(shù)軸上,點(diǎn)B與點(diǎn)C關(guān)于點(diǎn)A對(duì)稱,A、B兩點(diǎn)對(duì)應(yīng)的實(shí)數(shù)分別是和﹣1,則點(diǎn)C所對(duì)應(yīng)的實(shí)數(shù)是()A.1+ B.2+ C.2﹣1 D.2+18.益陽(yáng)市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是269.如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.4610.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)11.下列運(yùn)算正確的是()A.2+a=3 B.=C. D.=12.把一枚六個(gè)面編號(hào)分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個(gè)正面朝上的編號(hào)分別為m,n,則二次函數(shù)y=xA.512B.49C.17二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號(hào)是(把你認(rèn)為正確的都填上).14.如果一個(gè)矩形的面積是40,兩條對(duì)角線夾角的正切值是,那么它的一條對(duì)角線長(zhǎng)是__________.15.當(dāng)x為_____時(shí),分式的值為1.16.如果一個(gè)扇形的弧長(zhǎng)等于它的半徑,那么此扇形成為“等邊扇形”.則半徑為2的“等邊扇形”的面積為.17.如圖,PC是⊙O的直徑,PA切⊙O于點(diǎn)P,AO交⊙O于點(diǎn)B;連接BC,若,則______.18.如果實(shí)數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡(jiǎn),再求值:÷,其中m是方程x2+2x-3=0的根.20.(6分)如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=-8x的圖象交于A、B兩點(diǎn),與坐標(biāo)軸交于M、N兩點(diǎn).且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣1.求一次函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出y21.(6分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B、M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.(1)判斷AE與⊙O的位置關(guān)系,并說明理由;(2)若BC=6,AC=4CE時(shí),求⊙O的半徑.22.(8分)如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)C,過點(diǎn)C作直線MN,使∠BCM=2∠A.判斷直線MN與⊙O的位置關(guān)系,并說明理由;若OA=4,∠BCM=60°,求圖中陰影部分的面積.23.(8分)對(duì)于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)M,N,給出如下定義:點(diǎn)M與點(diǎn)N的“折線距離”為:.例如:若點(diǎn)M(-1,1),點(diǎn)N(2,-2),則點(diǎn)M與點(diǎn)N的“折線距離”為:.根據(jù)以上定義,解決下列問題:已知點(diǎn)P(3,-2).①若點(diǎn)A(-2,-1),則d(P,A)=;②若點(diǎn)B(b,2),且d(P,B)=5,則b=;③已知點(diǎn)C(m,n)是直線上的一個(gè)動(dòng)點(diǎn),且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標(biāo)為(0,t),若⊙F上存在點(diǎn)E,使d(E,O)=2,直接寫出t的取值范圍.24.(10分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點(diǎn),于點(diǎn),交于,求的值(3)如圖,中,,為邊的中點(diǎn),于點(diǎn),交于,若,,求.25.(10分)解不等式組并在數(shù)軸上表示解集.26.(12分)某初級(jí)中學(xué)正在展開“文明城市創(chuàng)建人人參與,志愿服務(wù)我當(dāng)先行”的“創(chuàng)文活動(dòng)”為了了解該校志愿者參與服務(wù)情況,現(xiàn)對(duì)該校全體志愿者進(jìn)行隨機(jī)抽樣調(diào)查.根據(jù)調(diào)查數(shù)據(jù)繪制了如下所示不完整統(tǒng)計(jì)圖.條形統(tǒng)計(jì)圖中七年級(jí)、八年級(jí)、九年級(jí)、教師分別指七年級(jí)、八年級(jí)、九年級(jí)、教師志愿者中被抽到的志愿者,扇形統(tǒng)計(jì)圖中的百分?jǐn)?shù)指的是該年級(jí)被抽到的志愿者數(shù)與樣本容量的比.請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;若該校共有志愿者600人,則該校九年級(jí)大約有多少志愿者?27.(12分)(1)計(jì)算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡(jiǎn),再求值:()÷,其中x=﹣1.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關(guān)于AC對(duì)稱,則BE交于AC的點(diǎn)是P點(diǎn),此時(shí)PD+PE最小,∵在AC上取任何一點(diǎn)(如Q點(diǎn)),QD+QE都大于PD+PE(BE),∴此時(shí)PD+PE最小,此時(shí)PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對(duì)稱-最短路線問題等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是找出PD+PE最小時(shí)P點(diǎn)的位置.2、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當(dāng)他忘記了末位數(shù)字時(shí),要一次能打開的概率是.故選A.3、B【解析】分析:根據(jù)線段垂直平分線的性質(zhì),把三角形的周長(zhǎng)問題轉(zhuǎn)化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長(zhǎng)=AC+AE+CE=AC+BC=2+2,故選B.點(diǎn)睛:本題考查了等腰三角形性質(zhì)和線段垂直平分線性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.4、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項(xiàng)中的不等式.故選B.5、D【解析】

根據(jù)圖象可設(shè)二次函數(shù)的頂點(diǎn)式,再將點(diǎn)(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點(diǎn)為(1,3)∴,將點(diǎn)(0,0)代入得解得∴故答案為:D.【點(diǎn)睛】本題考查了是根據(jù)實(shí)際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.6、D【解析】

本題關(guān)鍵是正確分析出所剪時(shí)的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時(shí),虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項(xiàng).【點(diǎn)睛】本題考查了平面圖形在實(shí)際生活中的應(yīng)用,有良好的空間想象能力過動(dòng)手能力是解題關(guān)鍵.7、D【解析】

設(shè)點(diǎn)C所對(duì)應(yīng)的實(shí)數(shù)是x.根據(jù)中心對(duì)稱的性質(zhì),對(duì)稱點(diǎn)到對(duì)稱中心的距離相等,則有,解得.故選D.8、C【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項(xiàng)錯(cuò)誤;B、因?yàn)楣灿?組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項(xiàng)錯(cuò)誤;C、平均數(shù)==12,故本選項(xiàng)正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識(shí),解答本題的關(guān)鍵是掌握各知識(shí)點(diǎn)的概念.9、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn)得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn),∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識(shí)點(diǎn).10、C【解析】

根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當(dāng)x=1時(shí),y<0,即a+b+c<0,則②錯(cuò)誤;根據(jù)對(duì)稱軸可得:-b2a=-3根據(jù)函數(shù)與x軸有兩個(gè)交點(diǎn)可得:b2故選C.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負(fù),以及通過一些特殊點(diǎn)的位置得出a,b,c之間的關(guān)系是解題關(guān)鍵.11、D【解析】

根據(jù)整式的混合運(yùn)算計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、2與a不是同類項(xiàng),不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.12、C【解析】分析:本題可先列出出現(xiàn)的點(diǎn)數(shù)的情況,因?yàn)槎螆D象開口向上,要使圖象與x軸有兩個(gè)不同的交點(diǎn),則最低點(diǎn)要小于0,即4n-m2<0,再把m、n的值一一代入檢驗(yàn),看是否滿足.最后把滿足的個(gè)數(shù)除以擲骰子可能出現(xiàn)的點(diǎn)數(shù)的總個(gè)數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點(diǎn)有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點(diǎn)評(píng):本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進(jìn)行判斷,找出滿足條件的點(diǎn).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD?!摺鰽EF是等邊三角形,∴AE=AF?!咴赗t△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF?!郈E=CF。∴①說法正確。∵CE=CF,∴△ECF是等腰直角三角形?!唷螩EF=45°?!摺螦EF=60°,∴∠AEB=75°?!啖谡f法正確。如圖,連接AC,交EF于G點(diǎn),∴AC⊥EF,且AC平分EF?!摺螩AD≠∠DAF,∴DF≠FG?!郆E+DF≠EF?!啖壅f法錯(cuò)誤?!逧F=2,∴CE=CF=。設(shè)正方形的邊長(zhǎng)為a,在Rt△ADF中,,解得,∴?!??!啖苷f法正確。綜上所述,正確的序號(hào)是①②④。14、1.【解析】

如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.15、2【解析】

分式的值是1的條件是,分子為1,分母不為1.【詳解】∵3x-6=1,

∴x=2,

當(dāng)x=2時(shí),2x+1≠1.

∴當(dāng)x=2時(shí),分式的值是1.

故答案為2.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是分式為1的條件,解題關(guān)鍵是注意的是分母不能是1.16、1【解析】試題分析:根據(jù)題意可得圓心角的度數(shù)為:,則S==1.考點(diǎn):扇形的面積計(jì)算.17、26°【解析】

根據(jù)圓周角定理得到∠AOP=2∠C=64°,根據(jù)切線的性質(zhì)定理得到∠APO=90°,根據(jù)直角三角形兩銳角互余計(jì)算即可.【詳解】由圓周角定理得:∠AOP=2∠C=64°.∵PC是⊙O的直徑,PA切⊙O于點(diǎn)P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.故答案為:26°.【點(diǎn)睛】本題考查了切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.18、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當(dāng)x=3,y=﹣1時(shí),原式=﹣3+6﹣2=1.故答案為1.點(diǎn)睛:此題考查了分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、原式=,當(dāng)m=l時(shí),原式=【解析】先通分計(jì)算括號(hào)里的,再計(jì)算括號(hào)外的,化為最簡(jiǎn),由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整體代入化簡(jiǎn)后的式子,計(jì)算即可.解:原式=∵x2+2x-3=0,∴x1=-3,x2=1∵‘m是方程x2+2x-3=0的根,∴m=-3或m=1∵m+3≠0,∴.m≠-3,∴m=1當(dāng)m=l時(shí),原式:“點(diǎn)睛”本題考查了分式的化簡(jiǎn)求值、一元二次方程的解,解題的關(guān)鍵是通分、約分,以及分子分母的因式分解、整體代入.20、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】試題分析:(1)先根據(jù)反比例函數(shù)解析式求得兩個(gè)交點(diǎn)坐標(biāo),再根據(jù)待定系數(shù)法求得一次函數(shù)解析式;(1)將兩條坐標(biāo)軸作為△AOB的分割線,求得△AOB的面積;(3)根據(jù)兩個(gè)函數(shù)圖象交點(diǎn)的坐標(biāo),寫出一次函數(shù)圖象在反比例函數(shù)圖象上方時(shí)所有點(diǎn)的橫坐標(biāo)的集合即可.試題解析:(1)設(shè)點(diǎn)A坐標(biāo)為(﹣1,m),點(diǎn)B坐標(biāo)為(n,﹣1)∵一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y1=﹣8x∴將A(﹣1,m)B(n,﹣1)代入反比例函數(shù)y1=﹣8x∴將A(﹣1,4)、B(4,﹣1)代入一次函數(shù)y1=kx+b,可得4=-2k+b-2=4k+b,解得∴一次函數(shù)的解析式為y1=﹣x+1;,(1)在一次函數(shù)y1=﹣x+1中,當(dāng)x=0時(shí),y=1,即N(0,1);當(dāng)y=0時(shí),x=1,即M(1,0)∴=12×1×1+12×1×1+1(3)根據(jù)圖象可得,當(dāng)y1>y1時(shí),x的取值范圍為:x<﹣1或0<x<4考點(diǎn):1、一次函數(shù),1、反比例函數(shù),3、三角形的面積21、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】

(1)連接OM,則OM=OB,利用平行的判定和性質(zhì)得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質(zhì)和切線的判定即可得證;(2)設(shè)⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質(zhì)和解直角三角形的有關(guān)知識(shí)得到AB=12,易證△AOM∽△ABE,根據(jù)相似三角形的性質(zhì)即可求解.【詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,設(shè)⊙O的半徑為r,則AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半徑為2.1.22、(1)相切;(2).【解析】試題分析:(1)MN是⊙O切線,只要證明∠OCM=90°即可.(2)求出∠AOC以及BC,根據(jù)S陰=S扇形OAC﹣S△OAC計(jì)算即可.試題解析:(1)MN是⊙O切線.理由:連接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切線.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S陰=S扇形OAC﹣S△OAC=.考點(diǎn):直線與圓的位置關(guān)系;扇形面積的計(jì)算.23、(1)①6,②2或4,③1<m<4;(2)或.【解析】

(1)①根據(jù)“折線距離”的定義直接列式計(jì)算;②根據(jù)“折線距離”的定義列出方程,求解即可;③根據(jù)“折線距離”的定義列出式子,可知其幾何意義是數(shù)軸上表示數(shù)m的點(diǎn)到表示數(shù)3的點(diǎn)的距離與到表示數(shù)2的點(diǎn)的距離之和小于3.(2)由題意可知,根據(jù)圖像易得t的取值范圍.【詳解】解:(1)①②∴∴b=2或4③,即數(shù)軸上表示數(shù)m的點(diǎn)到表示數(shù)3的點(diǎn)的距離與到表示數(shù)2的點(diǎn)的距離之和小于3,所以1<m<4(2)設(shè)E(x,y),則,如圖,若點(diǎn)E在⊙F上,則.【點(diǎn)睛】本題主要考查坐標(biāo)與圖形,正確理解新定義及其幾何意義,利用數(shù)形結(jié)合的思想思考問題是解題關(guān)鍵.24、(1)相等,理由見解析;(2)2;(3).【解析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進(jìn)而得出△ABF≌△DAE,即可得出結(jié)論;

(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進(jìn)而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;

(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進(jìn)而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=∠D=90°,

∴∠BAE+∠DAE=90°,

∵AE⊥BF,

∴∠BAE+∠ABF=90°,

∴∠ABF=∠DAE,

在△ABF和△DAE中,∴△ABF≌△DAE,

∴BF=AE,(2)如圖2,

過點(diǎn)A作AM∥BC,過點(diǎn)C作CM∥AB,兩線相交于M,延長(zhǎng)BF交CM于G,

∴四邊形ABCM是平行四邊形,

∵∠ABC=90°,

∴?ABCM是矩形,

∵AB=BC,

∴矩形ABCM是正方形,

∴AB=BC=CM,

同(1)的方法得,△ABD≌△BCG,

∴CG=BD,

∵點(diǎn)D是BC中點(diǎn),

∴BD=BC=CM,

∴CG=CM=AB,

∵AB∥CM,

∴△AFB

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論