廣東省東莞市東方明珠校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第1頁
廣東省東莞市東方明珠校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第2頁
廣東省東莞市東方明珠校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第3頁
廣東省東莞市東方明珠校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第4頁
廣東省東莞市東方明珠校2023-2024學年中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣東省東莞市東方明珠校2023-2024學年中考考前最后一卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是()A. B. C. D.2.將(x+3)2﹣(x﹣1)2分解因式的結(jié)果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)3.如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣4.如圖,四個有理數(shù)在數(shù)軸上的對應點M,P,N,Q,若點M,N表示的有理數(shù)互為相反數(shù),則圖中表示絕對值最小的數(shù)的點是()A.點M B.點N C.點P D.點Q5.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.6.如圖,菱形OABC的頂點C的坐標為(3,4),頂點A在x軸的正半軸上.反比例函數(shù)(x>0)的圖象經(jīng)過頂點B,則k的值為A.12 B.20 C.24 D.327.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.8.在下列條件中,能夠判定一個四邊形是平行四邊形的是()A.一組對邊平行,另一組對邊相等B.一組對邊相等,一組對角相等C.一組對邊平行,一條對角線平分另一條對角線D.一組對邊相等,一條對角線平分另一條對角線9.把一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.1710.化簡的結(jié)果是()A.±4 B.4 C.2 D.±2二、填空題(本大題共6個小題,每小題3分,共18分)11.用科學計數(shù)器計算:2×sin15°×cos15°=_______(結(jié)果精確到0.01).12.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.13.等腰△ABC的底邊BC=8cm,腰長AB=5cm,一動點P在底邊上從點B開始向點C以0.25cm/秒的速度運動,當點P運動到PA與腰垂直的位置時,點P運動的時間應為_____秒.14.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是

________.15.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.16.如圖,⊙O的半徑為1cm,正六邊形ABCDEF內(nèi)接于⊙O,則圖中陰影部分面積為_____cm1.(結(jié)果保留π)三、解答題(共8題,共72分)17.(8分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;從中任意抽取1個球恰好是紅球的概率是;學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.18.(8分)如圖1,正方形ABCD的邊長為8,動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,當點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數(shù)量關系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.19.(8分)有一水果店,從批發(fā)市場按4元/千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費用300元,據(jù)預測,每天每千克價格上漲0.1元.設x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關系式;若存放x天后將蘋果一次性售出,設銷售總金額為y元,求出y與x的函數(shù)關系式;該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?20.(8分)在中,,是邊的中線,于,連結(jié),點在射線上(與,不重合)(1)如果①如圖1,②如圖2,點在線段上,連結(jié),將線段繞點逆時針旋轉(zhuǎn),得到線段,連結(jié),補全圖2猜想、之間的數(shù)量關系,并證明你的結(jié)論;(2)如圖3,若點在線段的延長線上,且,連結(jié),將線段繞點逆時針旋轉(zhuǎn)得到線段,連結(jié),請直接寫出、、三者的數(shù)量關系(不需證明)21.(8分)如圖,在△ABC中,∠C=90°,BC=4,AC=1.點P是斜邊AB上一點,過點P作PM⊥AB交邊AC或BC于點M.又過點P作AC的平行線,與過點M的PM的垂線交于點N.設邊AP=x,△PMN與△ABC重合部分圖形的周長為y.(1)AB=.(2)當點N在邊BC上時,x=.(1)求y與x之間的函數(shù)關系式.(4)在點N位于BC上方的條件下,直接寫出過點N與△ABC一個頂點的直線平分△ABC面積時x的值.22.(10分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?23.(12分)由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號的防霧霾口罩共20萬只,且所有產(chǎn)品當月全部售出,原料成本、銷售單價及工人生產(chǎn)提成如表:若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產(chǎn)品分別是多少萬只?公司實行計件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產(chǎn)量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)24.樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】A,B,C只能通過旋轉(zhuǎn)得到,D既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn)得到,故選D.2、C【解析】

直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.【點睛】此題主要考查了公式法分解因式,正確應用平方差公式是解題關鍵.3、D【解析】

連接OC交MN于點P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質(zhì)的運用、勾股定理的運用、三角函數(shù)值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質(zhì)求解是關鍵.4、C【解析】試題分析:∵點M,N表示的有理數(shù)互為相反數(shù),∴原點的位置大約在O點,∴絕對值最小的數(shù)的點是P點,故選C.考點:有理數(shù)大小比較.5、A【解析】

設黃球有x個,根據(jù)摸出一個球是藍球的概率是,得出黃球的個數(shù),再根據(jù)概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據(jù)題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所求的情況數(shù)是解決本題的關鍵.6、D【解析】

如圖,過點C作CD⊥x軸于點D,∵點C的坐標為(3,4),∴OD=3,CD=4.∴根據(jù)勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標為(8,4).∵點B在反比例函數(shù)(x>0)的圖象上,∴.故選D.7、C【解析】

由正方形的性質(zhì)知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,

∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,

∴DG=CG-CD=2,AD∥GF,

則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟練掌握正方形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.8、C【解析】A、錯誤.這個四邊形有可能是等腰梯形.B、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.C、正確.可以利用三角形全等證明平行的一組對邊相等.故是平行四邊形.D、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.故選C.9、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.10、B【解析】

根據(jù)算術(shù)平方根的意義求解即可.【詳解】4,故選:B.【點睛】本題考查了算術(shù)平方根的意義,一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根,正數(shù)a有一個正的算術(shù)平方根,0的算術(shù)平方根是0,負數(shù)沒有算術(shù)平方根.二、填空題(本大題共6個小題,每小題3分,共18分)11、0.50【解析】

直接使用科學計算器計算即可,結(jié)果需保留二位有效數(shù)字.【詳解】用科學計算器計算得0.5,故填0.50,【點睛】此題主要考查科學計算器的使用,注意結(jié)果保留二位有效數(shù)字.12、【解析】

利用特殊三角形的三邊關系,求出AM,AE長,求比值.【詳解】解:如圖所示,設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【點睛】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實際關系.13、7秒或25秒.【解析】考點:勾股定理;等腰三角形的性質(zhì).專題:動點型;分類討論.分析:根據(jù)等腰三角形三線合一性質(zhì)可得到BD的長,由勾股定理可求得AD的長,再分兩種情況進行分析:①PA⊥AC②PA⊥AB,從而可得到運動的時間.解答:解:如圖,作AD⊥BC,交BC于點D,∵BC=8cm,∴BD=CD=12∴AD=AB分兩種情況:當點P運動t秒后有PA⊥AC時,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,當點P運動t秒后有PA⊥AB時,同理可證得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴點P運動的時間為7秒或25秒.點評:本題利用了等腰三角形的性質(zhì)和勾股定理求解.14、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.15、或【解析】

作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.16、【解析】試題分析:根據(jù)圖形分析可得求圖中陰影部分面積實為求扇形部分面積,將原圖陰影部分面積轉(zhuǎn)化為扇形面積求解即可.試題解析:如圖所示:連接BO,CO,∵正六邊形ABCDEF內(nèi)接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等邊三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴圖中陰影部分面積為:S扇形OBC=.考點:正多邊形和圓.三、解答題(共8題,共72分)17、(1)必然,不可能;(2);(3)此游戲不公平.【解析】

(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有20種可能,兩球同色的有8種情況,故選擇甲的概率為:;則選擇乙的概率為:,故此游戲不公平.【點睛】此題主要考查了游戲公平性,正確列出樹狀圖是解題關鍵.18、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】

(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當DE=16?8時,△AEM是等邊三角形;(3)設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即當DE=16﹣8時,△AEM是等邊三角形;(3)△ANF的面積不變.設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面積不變.【點睛】本題屬于四邊形綜合題,主要考查了平行四邊形的判定與性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形以及相似三角形的判定與性質(zhì)的綜合運用,解決問題的關鍵是作輔助線構(gòu)造相似三角形,利用全等三角形的對應邊相等,相似三角形的對應邊成比例得出結(jié)論.19、;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【解析】

(1)根據(jù)按每千克元的市場價收購了這種蘋果千克,此后每天每千克蘋果價格會上漲元,進而得出天后每千克蘋果的價格為元與的函數(shù)關系;(2)根據(jù)每千克售價乘以銷量等于銷售總金額,求出即可;(3)利用總售價-成本-費用=利潤,進而求出即可.【詳解】根據(jù)題意知,;.當時,最大利潤12500元,答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【點睛】此題主要考查了二次函數(shù)的應用以及二次函數(shù)最值求法,得出與的函數(shù)關系是解題關鍵.20、(1)①60;②.理由見解析;(2),理由見解析.【解析】

(1)①根據(jù)直角三角形斜邊中線的性質(zhì),結(jié)合,只要證明是等邊三角形即可;②根據(jù)全等三角形的判定推出,根據(jù)全等的性質(zhì)得出,(2)如圖2,求出,,求出,,根據(jù)全等三角形的判定得出,求出,推出,解直角三角形求出即可.【詳解】解:(1)①∵,,∴,∵,∴,∴是等邊三角形,∴.故答案為60.②如圖1,結(jié)論:.理由如下:∵,是的中點,,,∴,,∴,,,∴,∵,∴,∵線段繞點逆時針旋轉(zhuǎn)得到線段,∴,在和中,∴,∴.(2)結(jié)論:.理由:∵,是的中點,,,∴,,∴,,,∴,∵,∴,∵線段繞點逆時針旋轉(zhuǎn)得到線段,∴,在和中,∴,∴,而,∴,在中,,∴,∴,∴,即.【點睛】本題考查了三角形外角性質(zhì),全等三角形的性質(zhì)和判定,直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)的應用,能推出是解此題的關鍵,綜合性比較強,證明過程類似.21、(1)2;(2);(1)詳見解析;(4)滿足條件的x的值為.【解析】

(1)根據(jù)勾股定理可以直接求出(2)先證明四邊形PAMN是平行四邊形,再根據(jù)三角函數(shù)值求解(1)分情況根據(jù)t的大小求出不同的函數(shù)關系式(4)不同條件下:當點G是AC中點時和當點D是AB中點時,根據(jù)相似三角形的性質(zhì)求解.【詳解】解:(1)在中,,故答案為2.(2)如圖1中,∴四邊形PAMN是平行四邊形,當點在上時,,.(1)①當時,如圖1,.②當時,如圖2,y③當時,如圖1,(4)如圖4中,當點是中點時,滿足條件.如圖2中,當點是中點時,滿足條件..綜上所述,滿足條件的x的值為或.【點睛】此題重點考查學生對一次函數(shù)的應用,勾股定理,平行四邊形的判定,相似三角形的性質(zhì)和三角函數(shù)值的綜合應用能力,熟練掌握勾股定理和三角函數(shù)值的解法是解題的關鍵.22、(1)6;(2);;(3)10或;【解析】

(1)根據(jù)圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數(shù)關系式都是在運動6秒的基礎上得到的,因此注意在總時間內(nèi)減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經(jīng)走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論