2024屆湖北省巴東縣重點(diǎn)中學(xué)中考數(shù)學(xué)四模試卷含解析_第1頁(yè)
2024屆湖北省巴東縣重點(diǎn)中學(xué)中考數(shù)學(xué)四模試卷含解析_第2頁(yè)
2024屆湖北省巴東縣重點(diǎn)中學(xué)中考數(shù)學(xué)四模試卷含解析_第3頁(yè)
2024屆湖北省巴東縣重點(diǎn)中學(xué)中考數(shù)學(xué)四模試卷含解析_第4頁(yè)
2024屆湖北省巴東縣重點(diǎn)中學(xué)中考數(shù)學(xué)四模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖北省巴東縣重點(diǎn)中學(xué)中考數(shù)學(xué)四模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<42.如圖,在平面直角坐標(biāo)系中,半徑為2的圓P的圓心P的坐標(biāo)為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或53.如圖,O為直線AB上一點(diǎn),OE平分∠BOC,OD⊥OE于點(diǎn)O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°4.對(duì)于不為零的兩個(gè)實(shí)數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.5.下列四個(gè)圖形中,是中心對(duì)稱圖形的是()A. B. C. D.6.的絕對(duì)值是()A.﹣4 B. C.4 D.0.47.如圖是一個(gè)正方體的表面展開(kāi)圖,如果對(duì)面上所標(biāo)的兩個(gè)數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.8.下列各數(shù):1.414,,﹣,0,其中是無(wú)理數(shù)的為()A.1.414 B. C.﹣ D.09.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°10.如圖,平行四邊形ABCD中,點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,點(diǎn)D在y軸上,點(diǎn)B、點(diǎn)C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.10二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.一次函數(shù)y=kx+b的圖象如圖所示,當(dāng)y>0時(shí),x的取值范圍是_____.12.在□ABCD中,按以下步驟作圖:①以點(diǎn)B為圓心,以BA長(zhǎng)為半徑作弧,交BC于點(diǎn)E;②分別以A,E為圓心,大于AE的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)F;③連接BF,延長(zhǎng)線交AD于點(diǎn)G.若∠AGB=30°,則∠C=_______°.13.如圖,從直徑為4cm的圓形紙片中,剪出一個(gè)圓心角為90°的扇形OAB,且點(diǎn)O、A、B在圓周上,把它圍成一個(gè)圓錐,則圓錐的底面圓的半徑是_____cm.14.將直尺和直角三角尺按如圖方式擺放.若,,則________.15.據(jù)統(tǒng)計(jì),今年無(wú)錫黿頭渚“櫻花節(jié)”活動(dòng)期間入園賞櫻人數(shù)約803萬(wàn)人次,用科學(xué)記數(shù)法可表示為_(kāi)____人次.16.一個(gè)圓錐的高為3,側(cè)面展開(kāi)圖是半圓,則圓錐的側(cè)面積是_________三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,以O(shè)A為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF.(1)判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長(zhǎng).18.(8分)如圖,在中,AB=AC,,點(diǎn)D是BC的中點(diǎn),DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點(diǎn)M,射線DM繞點(diǎn)D順時(shí)針旋轉(zhuǎn),與AC邊交于點(diǎn)N.①根據(jù)條件補(bǔ)全圖形;②寫出DM與DN的數(shù)量關(guān)系并證明;③用等式表示線段BM、CN與BC之間的數(shù)量關(guān)系,(用含的銳角三角函數(shù)表示)并寫出解題思路.19.(8分)由于持續(xù)高溫和連日無(wú)雨,某水庫(kù)的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬(wàn)m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對(duì)這種干旱情況,從第20天開(kāi)始向水庫(kù)注水,注水量y2(萬(wàn)m3)與時(shí)間(天)的關(guān)系如圖中線段l2所示(不考慮其他因素).(1)求原有蓄水量y1(萬(wàn)m3)與時(shí)間(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫(kù)總蓄水量.(2)求當(dāng)0≤x≤60時(shí),水庫(kù)的總蓄水量y萬(wàn)(萬(wàn)m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬(wàn)m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時(shí)x的范圍.20.(8分)如圖,已知點(diǎn)A(﹣2,0),B(4,0),C(0,3),以D為頂點(diǎn)的拋物線y=ax2+bx+c過(guò)A,B,C三點(diǎn).(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)設(shè)拋物線的對(duì)稱軸DE交線段BC于點(diǎn)E,P為第一象限內(nèi)拋物線上一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo).21.(8分)某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖?,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:(說(shuō)明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分﹣74分;D級(jí):60分以下)(1)寫出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級(jí)學(xué)生所在的扇形圓心角的度數(shù)為;(2)該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在等級(jí)內(nèi);(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?22.(10分)甲、乙兩人分別站在相距6米的A、B兩點(diǎn)練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過(guò)程中的最高點(diǎn)H與甲的水平距離AE為4米,現(xiàn)以A為原點(diǎn),直線AB為x軸,建立平面直角坐標(biāo)系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達(dá)式及飛行的最高高度.23.(12分)甲、乙、丙、丁四位同學(xué)進(jìn)行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.若確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,恰好選中乙同學(xué)的概率是.若隨機(jī)抽取兩位同學(xué),請(qǐng)用畫樹(shù)狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.24.如圖,∠MON的邊OM上有兩點(diǎn)A、B在∠MON的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠MON的兩邊的距離相等,且△PAB的周長(zhǎng)最小.(保留作圖痕跡,不寫作法)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

不等式先展開(kāi)再移項(xiàng)即可解答.【詳解】解:不等式3x<2(x+2),展開(kāi)得:3x<2x+4,移項(xiàng)得:3x-2x<4,解之得:x<4.故答案選D.【點(diǎn)睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握解一元一次不等式的步驟.2、D【解析】

分圓P在y軸的左側(cè)與y軸相切、圓P在y軸的右側(cè)與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當(dāng)圓P在y軸的左側(cè)與y軸相切時(shí),平移的距離為3-2=1,當(dāng)圓P在y軸的右側(cè)與y軸相切時(shí),平移的距離為3+2=5,故選D.【點(diǎn)睛】本題考查的是切線的判定、坐標(biāo)與圖形的變化-平移問(wèn)題,掌握切線的判定定理是解題的關(guān)鍵,解答時(shí),注意分情況討論思想的應(yīng)用.3、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點(diǎn)睛:本題考查了角平分線的定義:從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線叫做這個(gè)角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.4、C【解析】

先根據(jù)規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質(zhì)即可求解.【詳解】由題意,可得當(dāng)2<x,即x>2時(shí),y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點(diǎn),故A、D錯(cuò)誤;當(dāng)2≥x,即x≤2時(shí),y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時(shí),0<x≤2,故B錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質(zhì),根據(jù)新定義得出函數(shù)y=2★x的解析式是解題的關(guān)鍵.5、D【解析】試題分析:根據(jù)中心對(duì)稱圖形的定義,結(jié)合選項(xiàng)所給圖形進(jìn)行判斷即可.解:A、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、是中心對(duì)稱圖形,故本選項(xiàng)正確;故選D.考點(diǎn):中心對(duì)稱圖形.6、B【解析】分析:根據(jù)絕對(duì)值的性質(zhì),一個(gè)負(fù)數(shù)的絕對(duì)值等于其相反數(shù),可有相反數(shù)的意義求解.詳解:因?yàn)?的相反數(shù)為所以-的絕對(duì)值為.故選:B點(diǎn)睛:此題主要考查了求一個(gè)數(shù)的絕對(duì)值,關(guān)鍵是明確絕對(duì)值的性質(zhì),一個(gè)正數(shù)的絕對(duì)值等于本身,0的絕對(duì)值是0,一個(gè)負(fù)數(shù)的絕對(duì)值為其相反數(shù).7、D【解析】

根據(jù)正方體平面展開(kāi)圖的特征得出每個(gè)相對(duì)面,再由相對(duì)面上的兩個(gè)數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對(duì),“y”與“-2”相對(duì),“x”與“-8”相對(duì),故x=8,故選D.【點(diǎn)睛】本題主要考查了正方體相對(duì)面上的文字,解決本題的關(guān)鍵是要熟練掌握正方體展開(kāi)圖的特征.8、B【解析】試題分析:根據(jù)無(wú)理數(shù)的定義可得是無(wú)理數(shù).故答案選B.考點(diǎn):無(wú)理數(shù)的定義.9、A【解析】

利用三角形內(nèi)角和求∠B,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】解:根據(jù)三角形內(nèi)角和定理可得:∠B=30°,根據(jù)相似三角形的性質(zhì)可得:∠B′=∠B=30°.故選:A.【點(diǎn)睛】本題考查相似三角形的性質(zhì),掌握相似三角形對(duì)應(yīng)角相等是本題的解題關(guān)鍵.10、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點(diǎn)睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點(diǎn)向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】試題解析:根據(jù)圖象和數(shù)據(jù)可知,當(dāng)y>0即圖象在x軸的上方,x>1.

故答案為x>1.12、120【解析】

首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補(bǔ)即可解決問(wèn)題.【詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【點(diǎn)睛】本題考查基本作圖、平行四邊形的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí)13、【解析】

設(shè)圓錐的底面圓的半徑為r,由于∠AOB=90°得到AB為圓形紙片的直徑,則OB=cm,根據(jù)弧長(zhǎng)公式計(jì)算出扇形OAB的弧AB的長(zhǎng),然后根據(jù)圓錐的側(cè)面展開(kāi)圖為扇形,扇形的弧長(zhǎng)等于圓錐底面圓的周長(zhǎng)進(jìn)行計(jì)算.【詳解】解:設(shè)圓錐的底面圓的半徑為r,連結(jié)AB,如圖,∵扇形OAB的圓心角為90°,∴∠AOB=90°,∴AB為圓形紙片的直徑,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的長(zhǎng)=π,∴2πr=π,∴r=(cm).故答案為.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為扇形,扇形的弧長(zhǎng)等于圓錐底面圓的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).也考查了圓周角定理和弧長(zhǎng)公式.14、80°.【解析】

由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對(duì)邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點(diǎn)睛】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關(guān)鍵.15、8.03×106【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).803萬(wàn)=.16、18π【解析】解:設(shè)圓錐的半徑為,母線長(zhǎng)為.則解得三、解答題(共8題,共72分)17、(1)EF是⊙O的切線,理由詳見(jiàn)解析;(1)詳見(jiàn)解析;(3)⊙O的半徑的長(zhǎng)為1.【解析】

(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結(jié)論;(1)根據(jù)含30°的直角三角形的性質(zhì)證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據(jù)三角形的內(nèi)角和得到∠EOD=60°,求得∠EGO=30°,根據(jù)三角形和扇形的面積公式即可得到結(jié)論.【詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵陰影部分的面積解得:r1=4,即r=1,即⊙O的半徑的長(zhǎng)為1.【點(diǎn)睛】本題考查了切線的判定,等腰三角形的性質(zhì),圓周角定理,扇形的面積的計(jì)算,正確的作出輔助線是解題的關(guān)鍵.18、(1);(2)(2)①見(jiàn)解析;②DM=DN,理由見(jiàn)解析;③數(shù)量關(guān)系:【解析】

(1)先利用等腰三角形的性質(zhì)和三角形內(nèi)角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質(zhì)得到DA平分∠BAC,再根據(jù)角平分線性質(zhì)得到DE=DF,根據(jù)四邊形內(nèi)角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據(jù)正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案為:α;(2)①如圖:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;③數(shù)量關(guān)系:BM+CN=BC?sinα.證明思路為:先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接著在Rt△BDE可得BE=BDsinα,從而有BM+CN=BC?sinα.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì).19、(1)y1=-20x+1200,800;(2)15≤x≤40.【解析】

(1)根據(jù)圖中的已知點(diǎn)用待定系數(shù)法求出一次函數(shù)解析式(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范圍內(nèi)求出解即可.【詳解】解:(1)設(shè)y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,當(dāng)x=20時(shí),y1=-20×20+1200=800,(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入得則,所以y2=25x-500,當(dāng)0≤x≤20時(shí),y=-20x+1200,當(dāng)20<x≤60時(shí),y=y1+y2=-20x+1200+25x-500=5x+700,由題意解得該不等式組的解集為15≤x≤40所以發(fā)生嚴(yán)重干旱時(shí)x的范圍為15≤x≤40.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)一次函數(shù)和一元一次不等式的實(shí)際應(yīng)用能力,掌握一次函數(shù)和一元一次不等式的解法是解題的關(guān)鍵.20、(1)y=﹣38x2+34x+3;D(1,278【解析】

(1)設(shè)拋物線的解析式為y=a(x+2)(x-4),將點(diǎn)C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點(diǎn)D的坐標(biāo);(2)畫圖,先根據(jù)點(diǎn)B和C的坐標(biāo)確定直線BC的解析式,設(shè)P(m,-38m2+34m+3),則F(m,-【詳解】解:(1)設(shè)拋物線的解析式為y=a(x+2)(x﹣4),將點(diǎn)C(0,3)代入得:﹣8a=3,解得:a=﹣38y=﹣38x2+34x+3=﹣38(x﹣1)2∴拋物線的解析式為y=﹣38x2+34x+3,且頂點(diǎn)D(1,(2)∵B(4,0),C(0,3),∴BC的解析式為:y=﹣34∵D(1,278當(dāng)x=1時(shí),y=﹣34+3=9∴E(1,94∴DE=278-94=9設(shè)P(m,﹣38m2+34m+3),則F(m,﹣∵四邊形DEFP是平行四邊形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34解得:m1=1(舍),m2=3,∴P(3,158【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,利用方程思想列等式求點(diǎn)的坐標(biāo),難度適中.21、(1)4%;(2)72°;(3)380人【解析】

(1)根據(jù)A級(jí)人數(shù)及百分?jǐn)?shù)計(jì)算九年級(jí)(1)班學(xué)生人數(shù),用總?cè)藬?shù)減A、B、D級(jí)人數(shù),得C級(jí)人數(shù),再用C級(jí)人數(shù)÷總?cè)藬?shù)×360°,得C等級(jí)所在的扇形圓心角的度數(shù);(2)將人數(shù)按級(jí)排列,可得該班學(xué)生體育測(cè)試成績(jī)的中位數(shù);(3)用(A級(jí)百分?jǐn)?shù)+B級(jí)百分?jǐn)?shù))×1900,得這次考試中獲得A級(jí)和B級(jí)的九年級(jí)學(xué)生共有的人數(shù);(4)根據(jù)各等級(jí)人數(shù)多少,設(shè)計(jì)合格的等級(jí),使大多數(shù)人能合格.【詳解】解:(1)九年級(jí)(1)班學(xué)生人數(shù)為13÷26%=50人,C級(jí)人數(shù)為50-13-25-2=10人,C等級(jí)所在的扇形圓心角的度

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論