2023-2024學年廣東省深圳市鹽田區(qū)中考數學全真模擬試題含解析_第1頁
2023-2024學年廣東省深圳市鹽田區(qū)中考數學全真模擬試題含解析_第2頁
2023-2024學年廣東省深圳市鹽田區(qū)中考數學全真模擬試題含解析_第3頁
2023-2024學年廣東省深圳市鹽田區(qū)中考數學全真模擬試題含解析_第4頁
2023-2024學年廣東省深圳市鹽田區(qū)中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省深圳市鹽田區(qū)中考數學全真模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進行抽查.各組隨機抽取轄區(qū)內某三個小區(qū)中的一個進行檢查,則兩個組恰好抽到同一個小區(qū)的概率是()A. B. C. D.2.若代數式的值為零,則實數x的值為()A.x=0 B.x≠0 C.x=3 D.x≠33.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.94.某小組7名同學在一周內參加家務勞動的時間如下表所示,關于“勞動時間”的這組數據,以下說法正確的是()勞動時間(小時)33.544.5人數1132A.中位數是4,眾數是4 B.中位數是3.5,眾數是4C.平均數是3.5,眾數是4 D.平均數是4,眾數是3.55.如圖,是某幾何體的三視圖及相關數據,則該幾何體的側面積是()A.10π B.15π C.20π D.30π6.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個7.二次函數y=a(x﹣m)2﹣n的圖象如圖,則一次函數y=mx+n的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限8.將函數的圖象用下列方法平移后,所得的圖象不經過點A(1,4)的方法是()A.向左平移1個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移1個單位9.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.4310.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.11.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經測量AB=2m,則樹高為()米A. B. C.+1 D.312.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關于的分式方程的解為負數,則的取值范圍是_________.14.我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數式可表示為尺,根據題意列方程為.15.甲、乙兩個搬運工搬運某種貨物.已知乙比甲每小時多搬運600kg,甲搬運5000kg所用的時間與乙搬運8000kg所用的時間相等.設甲每小時搬運xkg貨物,則可列方程為_____.16.如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點C(0,4),D是OA中點,將△CDO以C為旋轉中心逆時針旋轉90°后,再將得到的三角形平移,使點C與點O重合,寫出此時點D的對應點的坐標:_____.17.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復試驗后發(fā)現,摸到紅球的頻率穩(wěn)定在0.3左右,則m的值約為__________.18.圓柱的底面半徑為1,母線長為2,則它的側面積為_____.(結果保留π)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數;②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數量關系,并證明.20.(6分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.21.(6分)如圖,在平面直角坐標系中,一次函數y=﹣12x+3的圖象與反比例函數y=kx(x>0,k是常數)的圖象交于A(a,2),B(4,b)兩點.求反比例函數的表達式;點C是第一象限內一點,連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點22.(8分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).該同學從5個項目中任選一個,恰好是田賽項目的概率P為;該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.23.(8分)某書店老板去圖書批發(fā)市場購買某種圖書,第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數量比第一次多10本,當按定價售出200本時,出現滯銷,便以定價的4折售完剩余的書.(1)第一次購書的進價是多少元?(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?24.(10分)解方程組.25.(10分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.26.(12分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.27.(12分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區(qū)的結果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為.故選:C.點睛:此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.2、A【解析】

根據分子為零,且分母不為零解答即可.【詳解】解:∵代數式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.3、B【解析】

作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據角平分線的性質得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.4、A【解析】

根據眾數和中位數的概念求解.【詳解】這組數據中4出現的次數最多,眾數為4,∵共有7個人,∴第4個人的勞動時間為中位數,所以中位數為4,故選A.【點睛】本題考查眾數與中位數的意義,一組數據中出現次數最多的數據叫做眾數;中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會出錯.5、B【解析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長為5,∵圓錐的底面周長等于圓錐的側面展開扇形的弧長,∴圓錐的底面周長=圓錐的側面展開扇形的弧長=2πr=2π×3=6π,∴圓錐的側面積=lr=×6π×5=15π,故選B6、D【解析】試題分析:根據等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當AB當底時,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當讓AB當腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關鍵是要分情況而定,所以學生一定要思維嚴密,不可遺漏.7、A【解析】

由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數圖象與系數的關系,即可得出一次函數y=mx+n的圖象經過第一、二、三象限.【詳解】解:觀察函數圖象,可知:m>0,n>0,∴一次函數y=mx+n的圖象經過第一、二、三象限.故選A.【點睛】本題考查了二次函數的圖象以及一次函數圖象與系數的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.8、D【解析】A.平移后,得y=(x+1)2,圖象經過A點,故A不符合題意;B.平移后,得y=(x?3)2,圖象經過A點,故B不符合題意;C.平移后,得y=x2+3,圖象經過A點,故C不符合題意;D.平移后,得y=x2?1圖象不經過A點,故D符合題意;故選D.9、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質,勾股定理,正確的作出輔助線是解題的關鍵.10、A【解析】

根據軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;

B、不是軸對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.11、C【解析】由題意可知,AC=1,AB=2,∠CAB=90°據勾股定理則BC=m;∴AC+BC=(1+)m.答:樹高為(1+)米.故選C.12、C【解析】

作MH⊥AC于H,如圖,根據正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據角平分線性質得BM=MH=,則AB=2+,于是利用正方形的性質得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質和正方形的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

分式方程去分母轉化為整式方程,由分式方程的解為負數,求出a的范圍即可【詳解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解為負數,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案為:a>1且a≠2【點睛】此題考查分式方程的解,解題關鍵在于求出x的值再進行分析14、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數式可表示為(x+1)尺,根據題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.15、=【解析】

設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,根據甲搬運5000kg所用時間與乙搬運8000kg所用時間相等建立方程求出其解就可以得出結論.【詳解】解:設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,由題意得:=.故答案是:=.【點睛】本題考查了由實際問題抽象出分式方程,根據題意找到等量關系是關鍵.16、(4,2).【解析】

利用圖象旋轉和平移可以得到結果.【詳解】解:∵△CDO繞點C逆時針旋轉90°,得到△CBD′,則BD′=OD=2,∴點D坐標為(4,6);當將點C與點O重合時,點C向下平移4個單位,得到△OAD′′,∴點D向下平移4個單位.故點D′′坐標為(4,2),故答案為(4,2).【點睛】平移和旋轉:平移是指在同一平面內,將一個圖形整體按照某個直線方向移動一定的距離,這樣的圖形運動叫做圖形的平移運動,簡稱平移.定義在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉.這個定點叫做旋轉中心,轉動的角度叫做旋轉角.17、3【解析】

在同樣條件下,大量重復實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出等式解答.【詳解】解:根據題意得,=0.3,解得m=3.故答案為:3.【點睛】本題考查隨機事件概率的意義,關鍵是要知道在同樣條件下,大量重復實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.18、4【解析】

根據圓柱的側面積公式,計算即可.【詳解】圓柱的底面半徑為r=1,母線長為l=2,則它的側面積為S側=2πrl=2π×1×2=4π.故答案為:4π.【點睛】題考查了圓柱的側面積公式應用問題,是基礎題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①45°,②;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明見解析.【解析】

(1)①先根據角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質得∠B=75°,最后利用三角形內角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據平行線的性質和等腰三角形的性質可得AG=AH,再由線段的和可得結論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點F,取BF的中點G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【點睛】本題是三角形的綜合題,難度適中,考查了三角形全等的性質和判定、等腰三角形的性質和判定、勾股定理、三角形的中位線定理等知識,熟練掌握這些性質是本題的關鍵,第(2)問構建等腰三角形是關鍵.20、路燈高CD為5.1米.【解析】

根據AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應邊的比相等列出比例式求解即可.【詳解】設CD長為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經檢驗,x=5.1是原方程的解,∴路燈高CD為5.1米.【點睛】本題考查了相似三角形的應用,解題的關鍵是根據已知條件得到平行線,從而證得相似三角形.21、(1)反比例函數的表達式為y=4x(x>0);(2)點P【解析】

(1)根據點A(a,2),B(4,b)在一次函數y=﹣12x+3的圖象上求出a、b的值,得出A、B(2)延長CA交y軸于點E,延長CB交x軸于點F,構建矩形OECF,根據S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF,設點P(0,m),根據反比例函數的幾何意義解答即可.【詳解】(1)∵點A(a,2),B(4,b)在一次函數y=﹣12x∴﹣12a+3=2,b=﹣1∴a=2,b=1,∴點A的坐標為(2,2),點B的坐標為(4,1),又∵點A(2,2)在反比例函數y=kx∴k=2×2=4,∴反比例函數的表達式為y=4x(x(2)延長CA交y軸于點E,延長CB交x軸于點F,∵AC∥x軸,BC∥y軸,則有CE⊥y軸,CF⊥x軸,點C的坐標為(4,2)∴四邊形OECF為矩形,且CE=4,CF=2,∴S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣12×2×2﹣1=4,設點P的坐標為(0,m),則S△OAP=12×2?|m∴m=±4,∴點P的坐標為(0,4)或(0,﹣4).【點睛】此題考查了反比例函數與一次函數的交點問題,涉及的知識有:坐標與圖形性質,直線與坐標軸的交點,待定系數法求函數解析式,熟練掌握待定系數法是解本題的關鍵.22、(1);(1);(3);【解析】

(1)直接根據概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結果數,再找出一個徑賽項目和一個田賽項目的結果數,然后根據概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結果數,然后根據概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結果數,其中一個徑賽項目和一個田賽項目的結果數為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結果數為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.23、賺了520元【解析】

(1)設第一次購書的單價為x元,根據第一次用1200元購書若干本,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根據(1)先求出第一次和第二次購書數目,再根據賣書數目×(實際售價﹣當次進價)求出二次賺的錢數,再分別相加即可得出答案.【詳解】(1)設第一次購書的單價為x元,根據題意得:+10=,解得:x=5,經檢驗,x=5是原方程的解,答:第一次購書的進價是5元;(2)第一次購書為1200÷5=240(本),第二次購書為240+10=250(本),第一次賺錢為240×(7﹣5)=480(元),第二次賺錢為200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以兩次共賺錢480+40=520(元),答:該老板兩次售書總體上是賺錢了,共賺了520元.【點睛】此題考查了分式方程的應用,掌握這次活動的流程,分析題意,找到關鍵描述語,找到合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論