版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣西兩校高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,如果向量與平行,則實數(shù)的值為()A. B. C. D.2.已知,且,,則()A. B. C. D.3.Rt△ABC的三個頂點都在一個球面上,兩直角邊的長分別為6和8,且球心O到平面ABC的距離為12,則球的半徑為()A.13 B.12 C.5 D.104.已知2弧度的圓心角所對的弧長為2,則這個圓心角所對的弦長是()A. B. C. D.5.(2018年天津卷文)設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最大值為A.6 B.19 C.21 D.456.函數(shù)的最小正周期為π,若其圖象向左平移個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象()A.關(guān)于點對稱 B.關(guān)于點對稱C.關(guān)于直線對稱 D.關(guān)于直線對稱7.下列選項正確的是()A.若,則B.若,則C.若,則D.若,則8.在中,是邊上一點,,且,則的值為()A. B. C. D.9.將一個底面半徑和高都是的圓柱挖去一個以上底面為底面,下底面圓心為頂點的圓錐后,剩余部分的體積記為,半徑為的半球的體積記為,則與的大小關(guān)系為()A. B. C. D.不能確定10.若,則下列不等式不成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方體ABCD﹣A1B1C1D1的棱長為1,M為B1C1中點,連接A1B,D1M,則異面直線A1B和D1M所成角的余弦值為________________________.12.空間一點到坐標(biāo)原點的距離是_______.13.中,內(nèi)角,,所對的邊分別是,,,且,,則的值為__________.14.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.15.已知數(shù)列滿足:(),設(shè)的前項和為,則______;16.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則直線不經(jīng)過第一象限的概率為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前n項和為,,.(1)證明:數(shù)列為等比數(shù)列;(2)證明:.18.已知函數(shù)(1)求函數(shù)的反函數(shù);(2)解方程:.19.已知函數(shù)f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;(2)當(dāng)x∈(m>0,n>0)時,函數(shù)g(x)=tf(x)+1(t≥0)的值域為[2-3m,2-3n],求實數(shù)t的取值范圍.20.某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求圖中的值;(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分,眾數(shù),中位數(shù);(3)若這100名學(xué)生語文成績某些分數(shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分數(shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).分數(shù)段[50,60)[60,70)[70,80)[80,90)1:12:13:44:521.如圖,矩形中,平面,,為上的點,且平面,.(Ⅰ)求證:平面;(Ⅱ)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)坐標(biāo)運算求出和,利用平行關(guān)系得到方程,解方程求得結(jié)果.【詳解】由題意得:,,解得:本題正確選項:【點睛】本題考查向量平行的坐標(biāo)表示問題,屬于基礎(chǔ)題.2、C【解析】
根據(jù)同角三角函數(shù)的基本關(guān)系及兩角和差的正弦公式計算可得.【詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【點睛】本題考查同角三角函數(shù)的基本關(guān)系,兩角和差的正弦公式,屬于中檔題.3、A【解析】
利用勾股定理計算出球的半徑.【詳解】的斜邊長為,所以外接圓的半徑為,所以球的半徑為.故選:A【點睛】本小題主要考查勾股定理計算,考查球的半徑有關(guān)計算,屬于基礎(chǔ)題.4、D【解析】
由弧長公式求出圓半徑,再在直角三角形中求解.【詳解】,如圖,設(shè)是中點,則,,,∴.故選D.【點睛】本題考查扇形弧長公式,在求弦長時,常在直角三角形中求解.5、C【解析】分析:首先畫出可行域,然后結(jié)合目標(biāo)目標(biāo)函數(shù)的幾何意義確定函數(shù)取得最大值的點,最后求解最大值即可.詳解:繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點A處取得最大值,聯(lián)立直線方程:,可得點A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.本題選擇C選項.點睛:求線性目標(biāo)函數(shù)z=ax+by(ab≠0)的最值,當(dāng)b>0時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最??;當(dāng)b<0時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.6、C【解析】
利用最小正周期為π,求出的值,根據(jù)平移得出,然后利用對稱性求解.【詳解】因為函數(shù)的最小正周期為π,所以,圖象向左平移個單位后得到,由得到的函數(shù)是奇函數(shù)可得,即.令得,,故A,B均不正確;令得,,時可得C正確.故選C.【點睛】本題主要考查三角函數(shù)的圖像變換和性質(zhì).平移變換時注意平移方向和對解析式的影響,性質(zhì)求解一般利用整體換元意識來處理.7、B【解析】
通過逐一判斷ABCD選項,得到答案.【詳解】對于A選項,若,代入,,故A錯誤;對于C選項,等價于,故C錯誤;對于D選項,若,則,故D錯誤,所以答案選B.【點睛】本題主要考查不等式的相關(guān)性質(zhì),難度不大.8、D【解析】
根據(jù),用基向量表示,然后與題目條件對照,即可求出.【詳解】由在中,是邊上一點,,則,即,故選.【點睛】本題主要考查了平面向量基本定理的應(yīng)用及向量的線性運算.9、C【解析】
根據(jù)題意分別表示出,通過比較。【詳解】所以,選C?!军c睛】,,。記住這幾個公式即可,屬于基礎(chǔ)題目。10、A【解析】
由題得a<b<0,再利用作差比較法判斷每一個選項的正誤得解.【詳解】由題得a<b<0,對于選項A,=,所以選項A錯誤.對于選項B,顯然正確.對于選項C,,所以,所以選項C正確.對于選項D,,所以選項D正確.故答案為A【點睛】(1)本題主要考查不等式的基本性質(zhì)和實數(shù)大小的比較,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)比差的一般步驟是:作差→變形(配方、因式分解、通分等)→與零比→下結(jié)論;比商的一般步驟是:作商→變形(配方、因式分解、通分等)→與1比→下結(jié)論.如果兩個數(shù)都是正數(shù),一般用比商,其它一般用比差.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
連接、,取的中點,連接,可知,且是以為腰的等腰三角形,然后利用銳角三角函數(shù)可求出的值作為所求的答案.【詳解】如下圖所示:連接、,取的中點,連接,在正方體中,,則四邊形為平行四邊形,所以,則異面直線和所成的角為或其補角,易知,由勾股定理可得,,為的中點,則,在中,,因此,異面直線和所成角的余弦值為,故答案為.【點睛】本題考查異面直線所成角的余弦值的計算,求解異面直線所成的角一般利用平移直線法求解,遵循“一作、二證、三計算”,在計算時,一般利用銳角三角函數(shù)的定義或余弦定理求解,考查計算能力,屬于中等題.12、【解析】
直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數(shù)學(xué)運算能力.13、4【解析】
利用余弦定理變形可得,從而求得結(jié)果.【詳解】由余弦定理得:本題正確結(jié)果:【點睛】本題考查余弦定理的應(yīng)用,關(guān)鍵是能夠熟練應(yīng)用的變形,屬于基礎(chǔ)題.14、【解析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.15、130【解析】
先利用遞推公式計算出的通項公式,然后利用錯位相減法可求得的表達式,即可完成的求解.【詳解】因為,所以,所以,所以,又因為,不符合時的通項公式,所以,當(dāng)時,,所以,所以,所以,所以.故答案為:.【點睛】本題考查根據(jù)數(shù)列的遞推公式求通項公式以及錯位相減法的使用,難度一般.利用遞推公式求解數(shù)列的通項公式時,若出現(xiàn)了的形式,一定要注意標(biāo)注,同時要驗證是否滿足的情況,這決定了通項公式是否需要分段去寫.16、【解析】
首先求出試驗發(fā)生包含的事件的取值所有可能的結(jié)果,滿足條件事件直線不經(jīng)過第一象限,符合條件的有種結(jié)果,根據(jù)古典概型概率公式得到結(jié)果.【詳解】試驗發(fā)生包含的事件,,得到的取值所有可能的結(jié)果有:共種結(jié)果,由得,當(dāng)時,直線不經(jīng)過第一象限,符合條件的有種結(jié)果,所以直線不經(jīng)過第一象限的概率.故答案為:【點睛】本題是一道古典概型題目,考查了古典概型概率公式,解題的關(guān)鍵是求出列舉基本事件,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】
(1)將已知遞推式取倒數(shù)得,,再結(jié)合等比數(shù)列的定義,即可得證;(2)由(1)得,再利用基本不等式以及放縮法和等比數(shù)列的求和公式,結(jié)合不等式的性質(zhì),即可得證.【詳解】(1),,可得,即有,可得數(shù)列為公比為2,首項為2的等比數(shù)列;(2)由(1)可得,即,由基本不等式可得,,即有.【點睛】本題考查等比數(shù)列的定義和通項公式、求和公式、考查構(gòu)造數(shù)列法以及放縮法的運用,考查化簡運算能力和推理能力,屬于中檔題.18、(1);(2)【解析】
(1)反解,然后交換的位置,寫出原函數(shù)的值域即可得到結(jié)果;(2)代入原函數(shù)與反函數(shù)的解析式,解方程即可得到答案.【詳解】(1)由得,得,因為,所以,所以.(2)由得2,所以,即,解得,所以,所以原方程的解集為.【點睛】本題考查了求反函數(shù)的解析式,考查了指數(shù)式與對數(shù)式的互化,屬于中檔題.19、(1)k≤1;(2)(0,1).【解析】試題分析:(1)把f(x)=代入,化簡得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在單調(diào)遞增,所以即,即m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根.由根的分布,可得,解得0<t<1.試題解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即為k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,則g(x)=1,不合題意,∴t>0.又當(dāng)t>0時,g(x)=-+t+1在上顯然是單調(diào)增函數(shù),∴即∴m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根.令h(x)=tx2-3x+1-t,則解得0<t<1.∴實數(shù)t的取值范圍是(0,1).20、(1)0.005;(2)平均分為73,眾數(shù)為65,中位數(shù)為;(3)10【解析】
(1)根據(jù)頻率之和為1,直接列式計算即可;(2)平均數(shù)等于每組的中間值乘以該組頻率,再求和;眾數(shù)指頻率最大的一組的中間值;中位數(shù)兩端的小長方形面積之和均為0.5;(3)根據(jù)題意分別求出,,,的人數(shù),即可得出結(jié)果.【詳解】(1)由頻率分布直方圖可得:,(2)平均分為眾數(shù)為65分.中位數(shù)為(3)數(shù)學(xué)成績在的人數(shù)為,在的人數(shù)為,在的人數(shù)為,在的人數(shù)為,在的人數(shù)為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電工程安全協(xié)議樣本
- 長期汽車銷售購銷合同
- 建設(shè)銀行個人貸款合同
- 墻體涂料工程分包合同
- 新版購銷合同的條款列舉
- 茶葉物聯(lián)網(wǎng)應(yīng)用合同
- 廢料買賣合同協(xié)議
- 臨時兼職合同書
- 債權(quán)債務(wù)轉(zhuǎn)讓協(xié)議法律分析
- 程序員保密協(xié)議的案例解析
- 模具開發(fā)FMEA失效模式分析
- 年產(chǎn)40萬噸灰底涂布白板紙造紙車間備料及涂布工段初步設(shè)計
- 1-3-二氯丙烯安全技術(shù)說明書MSDS
- 學(xué)生思想政治工作工作證明材料
- 一方出資一方出力合作協(xié)議
- 污水處理藥劑采購?fù)稑?biāo)方案(技術(shù)方案)
- 環(huán)保設(shè)施安全風(fēng)險評估報告
- 數(shù)字邏輯與計算機組成 習(xí)題答案 袁春風(fēng) 第3章作業(yè)批改總結(jié)
- 要求降低物業(yè)費的申請書范本
- 焊接機器人行業(yè)分析研究報告
- PI形式發(fā)票范文模板
評論
0/150
提交評論