![2022年廣西桂林市龍勝中學數學高三上期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view2/M03/10/13/wKhkFmZziIGASoJ6AAJ5uOEXhY0812.jpg)
![2022年廣西桂林市龍勝中學數學高三上期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view2/M03/10/13/wKhkFmZziIGASoJ6AAJ5uOEXhY08122.jpg)
![2022年廣西桂林市龍勝中學數學高三上期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view2/M03/10/13/wKhkFmZziIGASoJ6AAJ5uOEXhY08123.jpg)
![2022年廣西桂林市龍勝中學數學高三上期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view2/M03/10/13/wKhkFmZziIGASoJ6AAJ5uOEXhY08124.jpg)
![2022年廣西桂林市龍勝中學數學高三上期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view2/M03/10/13/wKhkFmZziIGASoJ6AAJ5uOEXhY08125.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.2.某中學有高中生人,初中生人為了解該校學生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.3.已知函數為奇函數,則()A. B.1 C.2 D.34.已知點P不在直線l、m上,則“過點P可以作無數個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.6.若,則實數的大小關系為()A. B. C. D.7.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.8.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.9.空氣質量指數是反映空氣狀況的指數,指數值趨小,表明空氣質量越好,下圖是某市10月1日-20日指數變化趨勢,下列敘述錯誤的是()A.這20天中指數值的中位數略高于100B.這20天中的中度污染及以上(指數)的天數占C.該市10月的前半個月的空氣質量越來越好D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好10.已知(為虛數單位,為的共軛復數),則復數在復平面內對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限11.為了得到函數的圖象,只需把函數的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度12.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.14.數列的前項和為,則數列的前項和_____.15.已知、為正實數,直線截圓所得的弦長為,則的最小值為__________.16.若將函數的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿足AD∥BC,,,E為AD的中點,AC與BE的交點為O.(1)設H是線段BE上的動點,證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值.18.(12分)設橢圓的離心率為,左、右焦點分別為,點D在橢圓C上,的周長為.(1)求橢圓C的標準方程;(2)過圓上任意一點P作圓E的切線l,若l與橢圓C交于A,B兩點,O為坐標原點,求證:為定值.19.(12分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;(3)請你根據每條可能的路線中等紅綠燈的次數的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?20.(12分)已知,,為正數,且,證明:(1);(2).21.(12分)設函數().(1)討論函數的單調性;(2)若關于x的方程有唯一的實數解,求a的取值范圍.22.(10分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.2、B【解析】
利用某一層樣本數等于某一層的總體個數乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數等于某一層的總體個數乘以抽樣比,本題是一道基礎題.3、B【解析】
根據整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數.而為奇函數,為偶函數,所以為偶函數,故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據函數的奇偶性求參數值,屬于基礎題.4、C【解析】
根據直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.5、C【解析】
根據題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.6、A【解析】
將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【點睛】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大?。蝗粽鏀迪嗤?,則結合對數函數的圖像或者換底公式可判斷大??;若真數和底數都不相同,則可與中間值如1,0比較大小.7、D【解析】
根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.8、B【解析】
由題意首先確定導函數的符號,然后結合題意確定函數在區(qū)間和處函數的特征即可確定函數圖像.【詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.9、C【解析】
結合題意,根據題目中的天的指數值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數值中有個低于,個高于,其中第個接近,第個高于,所以中位數略高于,故正確.對于,由圖可知天的指數值中高于的天數為,即占總天數的,故正確.對于,由圖可知該市月的前天的空氣質量越來越好,從第天到第天空氣質量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數在以下,中旬大部分指數在以上,所以該市月上旬的空氣質量比中旬的空氣質量好,故正確.故選:【點睛】本題考查了對折線圖數據的分析,讀懂題意是解題關鍵,并能運用所學知識對命題進行判斷,本題較為基礎.10、D【解析】
設,由,得,利用復數相等建立方程組即可.【詳解】設,則,所以,解得,故,復數在復平面內對應的點為,在第四象限.故選:D.【點睛】本題考查復數的幾何意義,涉及到共軛復數的定義、復數的模等知識,考查學生的基本計算能力,是一道容易題.11、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據題意,故只需把函數的圖象上所有的點向右平移個單位長度可得到函數的圖象,故答案為D.【點睛】本題主要考查三角函數的平移變換,難度不大.12、B【解析】
作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質定理可得出,可得出點為的中點,同理可得出點為的中點,結合中位線的性質可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質的應用,解答的關鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由題得,再根據求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎題.14、【解析】
解:兩式作差,得,經過檢驗得出數列的通項公式,進而求得的通項公式,裂項相消求和即可.【詳解】解:兩式作差,得化簡得,檢驗:當n=1時,,所以數列是以2為首項,2為公比的等比數列;,,令故填:.【點睛】本題考查求數列的通項公式,裂項相消求數列的前n項和,解題過程中需要注意n的范圍以及對特殊項的討論,側重考查運算能力.15、【解析】
先根據弦長,半徑,弦心距之間的關系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當且僅當時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關系,考核基本不等式求最值,關鍵是對目標式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.16、【解析】
由題意利用函數的圖象變換規(guī)律,三角函數的圖像的對稱性,求得的最小值.【詳解】解:將函數的圖象沿軸向右平移個單位長度,可得的圖象.根據圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數的圖象變換規(guī)律,正弦函數圖像的對稱性,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解析】
(1)因為底面ABCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因為H為線段BE上的動點,的面積是定值,從而三棱錐的體積是定值.(2)因為平面,所以,結合BE∥CD,所以,又因為,,且E為AD的中點,所以四邊形ABCE為正方形,所以,結合,則平面,連接,則,因為平面,所以,因為,所以是等腰直角三角形,O為斜邊AC上的中點,所以,且,所以平面,所以PO是四棱錐的高,又因為梯形ABCD的面積為,在中,,所以.(3)以O為坐標原點,建立空間直角坐標系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設平面PBD的法向量為,則即則,令,得到,設BC與平面PBD所成的角為,則,所以,所以直線BC與平面PBD所成角的余弦值為.18、(1)(2)見解析【解析】
(1)由,周長,解得,即可求得標準方程.(2)通過特殊情況的斜率不存在時,求得,再證明的斜率存在時,即可證得為定值.通過設直線的方程為與橢圓方程聯(lián)立,借助韋達定理求得,利用直線與圓相切,即,求得的關系代入,化簡即可證得即可證得結論.【詳解】(1)由題意得,周長,且.聯(lián)立解得,,所以橢圓C的標準方程為.(2)①當直線l的斜率不存在時,不妨設其方程為,則,所以,即.②當直線l的斜率存在時,設其方程為,并設,由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點睛】本題考查了橢圓的標準方程,直線與橢圓的位置關系中定值問題,考查了學生計算求解能力,難度較難.19、(1)6種;(2);(3).【解析】
(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數為條.(2)小明途中恰好經過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學的最佳路線為;應盡量避開.【點睛】本題考查概率在實際生活中的綜合應用問題,考查學生邏輯推理與運算能力,是一道有一定難度的題.20、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.21、(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數只有一個實數解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度舊房拆除工程資金支付與監(jiān)管合同
- 2025年度印刷行業(yè)人才培養(yǎng)與交流合作合同
- 2025年度商業(yè)樓宇戶外廣告牌設計與施工合同
- 2025年度天然大蒜精油大宗采購合同范本
- 2025年度股權并購項目盡職調查報告合同-@-1
- 2025年度跨境電商居間代理合同
- 2025年度西安二手房買賣合同規(guī)范版修訂版
- 2025年度建筑工程施工合同(裝配式建筑)
- 2025年度汽車租賃平臺掛靠車輛租賃服務合同
- 2025年度家居家具廣告代理投放合同范本
- 消防維保服務方案及實施細則
- 保衛(wèi)管理員培訓課件
- 香港朗文4B單詞及句子
- 數據中心運維方案
- 小龍蝦啤酒音樂節(jié)活動策劃方案課件
- 運動技能學習與控制課件第五章運動中的中樞控制
- 財務部規(guī)范化管理 流程圖
- 蘇教版2023年小學四年級數學下冊教學計劃+教學進度表
- 斷絕關系協(xié)議書范文參考(5篇)
- 量子力學課件1-2章-波函數-定態(tài)薛定諤方程
- 最新變態(tài)心理學課件
評論
0/150
提交評論