內(nèi)蒙古包鐵第一中學(xué)2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第1頁
內(nèi)蒙古包鐵第一中學(xué)2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第2頁
內(nèi)蒙古包鐵第一中學(xué)2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第3頁
內(nèi)蒙古包鐵第一中學(xué)2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第4頁
內(nèi)蒙古包鐵第一中學(xué)2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古包鐵第一中學(xué)2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若函數(shù),則的值為()A. B. C. D.2.已知a,b,c為實(shí)數(shù),則下列結(jié)論正確的是()A.若ac>bc>0,則a>b B.若a>b>0,則ac>bcC.若ac2>bc2,則a>b D.若a>b,則ac2>bc23.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步并不難,次日腳痛減一半,六朝才得至其關(guān),欲問每朝行里數(shù),請公仔細(xì)算相還”.其意思為:“有一個人走378里路,第1天健步行走,從第2天起,因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,可求出此人每天走多少里路.”那么此人第5天走的路程為()A.48里 B.24里 C.12里 D.6里4.同時擲兩個骰子,向上的點(diǎn)數(shù)之和是的概率是()A. B. C. D.5.已知內(nèi)角的對邊分別為,滿足且,則△ABC()A.一定是等腰非等邊三角形 B.一定是等邊三角形C.一定是直角三角形 D.可能是銳角三角形,也可能是鈍角三角形6.已知實(shí)數(shù)滿足,則的最大值為()A. B. C. D.7.邊長為1的正方形上有一動點(diǎn),則向量的范圍是()A. B. C. D.8.以拋物線C的頂點(diǎn)為圓心的圓交C于A、B兩點(diǎn),交C的準(zhǔn)線于D、E兩點(diǎn).已知|AB|=,|DE|=,則C的焦點(diǎn)到準(zhǔn)線的距離為()A.2 B.4 C.6 D.89.下列函數(shù)中是偶函數(shù)且最小正周期為的是()A. B.C. D.10.不等式的解集是A.或 B.或C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,那么__________.12.在中,角所對的邊分別為,若,則=______.13.382與1337的最大公約數(shù)是__________.14.已知,且,.則的值是________.15.在等差數(shù)列中,,,則.16.在中,已知角的對邊分別為,且,,,若有兩解,則的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.18.如圖,中,,角的平分線長為1.(1)求;(2)求邊的長.19.已知各項(xiàng)為正數(shù)的數(shù)列滿足:且.(1)證明:數(shù)列為等差數(shù)列.(2)若,證明:對一切正整數(shù)n,都有20.若在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)有“和一點(diǎn)”.(1)函數(shù)是否有“和一點(diǎn)”?請說明理由;(2)若函數(shù)有“和一點(diǎn)”,求實(shí)數(shù)的取值范圍;(3)求證:有“和一點(diǎn)”.21.在中,角A,B,C的對邊分別為a,b,c,已知.(1)求角B的大小;(2)若,,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

根據(jù)分段函數(shù)的定義域與函數(shù)解析式的關(guān)系,代值進(jìn)行計(jì)算即可.【詳解】解:由已知,又,又,所以:.

故選:D.【點(diǎn)睛】本題考查了分段函數(shù)的函數(shù)值計(jì)算問題,抓住定義域的范圍,屬于基礎(chǔ)題.2、C【解析】

本題可根據(jù)不等式的性質(zhì)以及運(yùn)用特殊值法進(jìn)行代入排除即可得到正確結(jié)果.【詳解】由題意,可知:對于A中,可設(shè),很明顯滿足,但,所以選項(xiàng)A不正確;對于B中,因?yàn)椴恢赖恼?fù)情況,所以不能直接得出,所以選項(xiàng)B不正確;對于C中,因?yàn)?,所以,所以,所以選項(xiàng)C正確;對于D中,若,則不能得到,所以選項(xiàng)D不正確.故選:C.【點(diǎn)睛】本題主要考查了不等式性質(zhì)的應(yīng)用以及特殊值法的應(yīng)用,著重考查了推理能力,屬于基礎(chǔ)題.3、C【解析】記每天走的路程里數(shù)為{an},由題意知{an}是公比的等比數(shù)列,由S6=378,得=378,解得:a1=192,∴=12(里).故選C.4、C【解析】

分別計(jì)算出所有可能的結(jié)果和點(diǎn)數(shù)之和為的所有結(jié)果,根據(jù)古典概型概率公式求得結(jié)果.【詳解】同時擲兩個骰子,共有種結(jié)果其中點(diǎn)數(shù)之和是的共有:,共種結(jié)果點(diǎn)數(shù)之和是的概率為:本題正確選項(xiàng):【點(diǎn)睛】本題考查古典概型問題中的概率的計(jì)算,關(guān)鍵是能夠準(zhǔn)確計(jì)算出總體基本事件個數(shù)和符合題意的基本事件個數(shù),屬于基礎(chǔ)題.5、B【解析】

根據(jù)正弦定理可得和,然后對進(jìn)行分類討論,結(jié)合三角形的性質(zhì),即可得到結(jié)果.【詳解】在中,因?yàn)?,所以,又,所以,又?dāng)時,因?yàn)椋詴r等邊三角形;當(dāng)時,因?yàn)?,所以不存在,綜上:一定是等邊三角形.故選:B.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,解題過程中注意兩解得情況,一般需要檢驗(yàn),本題屬于基礎(chǔ)題.6、A【解析】

由原式,明顯考查斜率的幾何意義,故上下同除以得,再畫圖分析求得的取值范圍,再用基本不等式求解即可.【詳解】所求式,上下同除以得,又的幾何意義為圓上任意一點(diǎn)到定點(diǎn)的斜率,由圖可得,當(dāng)過的直線與圓相切時取得臨界條件.當(dāng)過坐標(biāo)為時相切為一個臨界條件,另一臨界條件設(shè),化成一般式得,因?yàn)閳A與直線相切,故圓心到直線的距離,所以,,解得,故.設(shè),則,又,故,當(dāng)時取等號.故,故選A.【點(diǎn)睛】本題主要考查斜率的幾何意義,基本不等式的用法等.注意求斜率時需要設(shè)點(diǎn)斜式,利用圓心到直線的距離等于半徑列式求得斜率,在用基本不等式時要注意取等號的條件.7、A【解析】

分類,按在正方形的四條邊上分別求解.【詳解】如圖,分別以為建立平面直角坐標(biāo)系,,設(shè),,∴,當(dāng)在邊或上時,,所以,當(dāng)在邊上時,,,當(dāng)在邊上時,,,∴的取值范圍是.故選:A.【點(diǎn)睛】本題考查平面向量的數(shù)量積,通過建立坐標(biāo)系,把向量和數(shù)量積用坐標(biāo)表示,使問題簡單化.8、B【解析】

如圖,設(shè)拋物線方程為,交軸于點(diǎn),則,即點(diǎn)縱坐標(biāo)為,則點(diǎn)橫坐標(biāo)為,即,由勾股定理知,,即,解得,即的焦點(diǎn)到準(zhǔn)線的距離為4,故選B.【點(diǎn)睛】9、A【解析】

本題首先可將四個選項(xiàng)都轉(zhuǎn)化為的形式,然后對四個選項(xiàng)的奇偶性以及周期性依次進(jìn)行判斷,即可得出結(jié)果.【詳解】中,函數(shù),是偶函數(shù),周期為;中,函數(shù)是奇函數(shù),周期;中,函數(shù),是非奇非偶函數(shù),周期;中,函數(shù)是偶函數(shù),周期.綜上所述,故選A.【點(diǎn)睛】本題考查對三角函數(shù)的奇偶性以及周期性的判斷,考查三角恒等變換,偶函數(shù)滿足,對于函數(shù),其最小正周期為,考查化歸與轉(zhuǎn)化思想,是中檔題.10、C【解析】

把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點(diǎn)睛】本題主要考查了一元二次不等式的求解,其中把不等式對應(yīng)的一元二次方程能夠因式分解,即能夠轉(zhuǎn)化為幾個代數(shù)式的乘積形式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2017【解析】,故,由此得.【點(diǎn)睛】本題主要考查函數(shù)解析式的求解方法,考查等比數(shù)列前項(xiàng)和的計(jì)算公式.對于函數(shù)解析式的求法,有兩種,一種是換元法,另一種的變換法.解析中運(yùn)用的方法就是變換法,即將變換為含有的式子.也可以令.等比數(shù)列求和公式為.12、【解析】根據(jù)正弦定理得13、191【解析】

利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因?yàn)椋?,所?82與1337的最大公約數(shù)為191,故填:.【點(diǎn)睛】本題考查利用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公因數(shù),屬于容易題.14、2【解析】

.15、8【解析】

設(shè)等差數(shù)列的公差為,則,所以,故答案為8.16、【解析】

利用正弦定理得到,再根據(jù)有兩解得到,計(jì)算得到答案.【詳解】由正弦定理得:若有兩解:故答案為【點(diǎn)睛】本題考查了正弦定理,有兩解,意在考查學(xué)生的計(jì)算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1){x|x≤-1或x=1};(2);(3).【解析】試題分析:(1)把代入函數(shù)解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段寫出函數(shù)的解析式,由在上單調(diào)遞增,則需第一段二次函數(shù)的對稱軸小于等于,第二段一次函數(shù)的一次項(xiàng)系數(shù)大于0,且第二段函數(shù)的最大值小于等于第一段函數(shù)的最小值,聯(lián)立不等式組后求解的取值范圍;(3)把不等式對一切實(shí)數(shù)恒成立轉(zhuǎn)化為函數(shù)對一切實(shí)數(shù)恒成立,然后對進(jìn)行分類討論,利用函數(shù)單調(diào)性求得的范圍,取并集后得答案.試題解析:(1)當(dāng)時,,則;當(dāng)時,由,得,解得或;當(dāng)時,恒成立,∴方程的解集為或.(2)由題意知,若在R上單調(diào)遞增,則解得,∴實(shí)數(shù)的取值范圍為.(3)設(shè),則,不等式對任意恒成立,等價于不等式對任意恒成立.①若,則,即,取,此時,∴,即對任意的,總能找到,使得,∴不存在,使得恒成立.②若,則,∴的值域?yàn)?,∴恒成立③若,?dāng)時,單調(diào)遞減,其值域?yàn)?,由于,所以恒成立,?dāng)時,由,知,在處取得最小值,令,得,又,∴,綜上,.18、(1)(2)【解析】

(1)由題意知為銳角,利用二倍角余弦公式結(jié)合條件可計(jì)算出的值;(2)利用內(nèi)角和定理以及誘導(dǎo)公式計(jì)算出,在中利用正弦定理可計(jì)算出.【詳解】(1),則B為銳角,;(2),在中,由,得.【點(diǎn)睛】本題考查二倍角余弦公式、以及利用正弦定理解三角形,解三角形有關(guān)問題時,要根據(jù)已知元素類型合理選擇正弦定理與余弦定理,考查計(jì)算能力,屬于中等題.19、(1)證明見解析.(2)證明見解析.【解析】

(1)根據(jù)所給遞推公式,將式子變形,即可由等差數(shù)列定義證明數(shù)列為等差數(shù)列.(2)根據(jù)數(shù)列為等差數(shù)列,結(jié)合等差數(shù)列通項(xiàng)公式求法求得通項(xiàng)公式,并變形后令.由求得的取值范圍,即可表示出,由不等式性質(zhì)進(jìn)行放縮,求得后,即可證明不等式成立.【詳解】(1)證明:各項(xiàng)為正數(shù)的數(shù)列滿足:則,,同取倒數(shù)可得,所以,由等差數(shù)列定義可知數(shù)列為等差數(shù)列.(2)證明:由(1)可知數(shù)列為等差數(shù)列.,則數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列.則,令,因?yàn)?,所以,則,所以,所以,所以由不等式性質(zhì)可知,若,則總成立,因而,所以所以不等式得證.【點(diǎn)睛】本題考查了數(shù)列遞推公式的應(yīng)用,由定義證明等差數(shù)列,換元法及放縮法在證明不等式中的應(yīng)用,屬于中檔題.20、(1)不存在;(2)a>﹣2;(3)見解析【解析】

(1)解方程即可判斷;(2)由題轉(zhuǎn)化為2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分離參數(shù)a=2x﹣2求值域即可求解;(3)由題意判斷方程cos(x+1)=cosx+cos1是否有解即可.【詳解】(1)若函數(shù)有“和一點(diǎn)”,則不合題意故不存在(2)若函數(shù)f(x)=2x+a+2x有“和一點(diǎn)”.則方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)證明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論