2025屆廣西壯族自治區(qū)百色市廣西田陽高中高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2025屆廣西壯族自治區(qū)百色市廣西田陽高中高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2025屆廣西壯族自治區(qū)百色市廣西田陽高中高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2025屆廣西壯族自治區(qū)百色市廣西田陽高中高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2025屆廣西壯族自治區(qū)百色市廣西田陽高中高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣西壯族自治區(qū)百色市廣西田陽高中高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,若,則的最小值為().A.12 B. C.16 D.2.設,,,若則,的值是()A., B.,C., D.,3.設某曲線上一動點到點的距離與到直線的距離相等,經(jīng)過點的直線與該曲線相交于,兩點,且點恰為等線段的中點,則()A.6 B.10 C.12 D.144.將函數(shù)的圖象沿軸向左平移個單位,得到一個偶函數(shù)的圖象,則的一個可能取值為()A. B. C. D.5.(2016高考新課標III,理3)已知向量,則ABC=A.30 B.45 C.60 D.1206.已知,則的最小值為()A.2 B.0 C.-2 D.-47.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.點(4,0)關于直線5x+4y+21=0的對稱點是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)9.圓x-12+y-3A.1 B.2 C.2 D.310.已知角α的終邊過點P(2sin60°,-2cos60°),則sinα的值為()A. B. C.- D.-二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角,,所對的邊分別為,,,已知,,,則______.12.若,則=_________13.在中,分別是角的對邊,已知成等比數(shù)列,且,則的值為________.14.直線與圓交于兩點,若為等邊三角形,則______.15.設直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________16.設向量與向量共線,則實數(shù)等于__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.不等式的解集為______.18.某電視臺有一檔益智答題類綜藝節(jié)日,每期節(jié)目從現(xiàn)場編號為01~80的80名觀眾中隨機抽取10人答題.答題選手要從“科技”和“文藝”兩類題目中選一類作答,一共回答10個問題,答對1題得1分.(1)若采用隨機數(shù)表法抽取答題選手,按照以下隨機數(shù)表,從下方帶點的數(shù)字2開始向右讀,每次讀取兩位數(shù),一行用完接下一行左端,求抽取的第6個觀眾的編號.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系統(tǒng)抽樣法抽取答題選手,且抽取的最小編號為06,求抽取的最大編號.(3)某期節(jié)目的10名答題選手中6人選科技類題目,4人選文藝類題目.其中選擇科技類的6人得分的平均數(shù)為7,方差為;選擇文藝類的4人得分的平均數(shù)為8,方差為.求這期節(jié)目的10名答題選手得分的平均數(shù)和方差.19.已知α,β為銳角,tanα=(1)求sin2α(2)求tanβ20.已知函數(shù)().(1)若不等式的解集為,求的取值范圍;(2)當時,解不等式;(3)若不等式的解集為,若,求的取值范圍.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)向量的平行關系,得到間的等量關系,再根據(jù)“”的妙用結合基本不等式即可求解出的最小值.【詳解】因為,所以,所以,又因為,取等號時即,所以.故選:B.【點睛】本題考查利用基本不等式求解最小值,難度一般.本題是基本不等式中的常見類型問題:已知,則,取等號時.2、B【解析】

由向量相等的充要條件可得:,列出方程組,即可求解,得到答案.【詳解】由題意,向量,,,又因為,所以,所以,解得,故選B.【點睛】本題主要考查了平面向量的數(shù)乘運算及向量相等的充要條件,其中解答中熟記向量的共線條件,列出方程組求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、B【解析】由曲線上一動點到點的距離與到直線的距離相等知該曲線為拋物線,其方程為,分別過點向拋物線的準線作垂線,垂足分別為,由梯形的中位線定理知,所以,故選B.4、B【解析】

利用函數(shù)y=Asin(ωx+)的圖象變換可得函數(shù)平移后的解析式,利用其為偶函數(shù)即可求得答案.【詳解】令y=f(x)=sin(2x+),則f(x)=sin[2(x)+]=sin(2x),∵f(x)為偶函數(shù),∴=kπ,∴=kπ,k∈Z,∴當k=0時,.故的一個可能的值為.故選:B.【點睛】本題考查函數(shù)y=Asin(ωx+)的圖象變換,考查三角函數(shù)的奇偶性的應用,屬于中檔題.5、A【解析】試題分析:由題意,得,所以,故選A.【考點】向量的夾角公式.【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關的問題.6、D【解析】

根據(jù)不等式組畫出可行域,借助圖像得到最值.【詳解】根據(jù)不等式組畫出可行域得到圖像:將目標函數(shù)化為,根據(jù)圖像得到當目標函數(shù)過點時取得最小值,代入此點得到z=-4.故答案為:D.【點睛】利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標系內(nèi)作出可行域;(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型);(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結合可行域確定最優(yōu)解;(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值。7、D【解析】

由幾何體的三視圖得該幾何體是一個底面半徑,高的扣在平面上的半圓柱,由此能求出該幾何體的體積【詳解】由幾何體的三視圖得:

該幾何體是一個底面半徑,高的放在平面上的半圓柱,如圖,

故該幾何體的體積為:故選:D【點睛】本題考查幾何體的體積的求法,考查幾何體的三視圖等基礎知識,考查推理能力與計算能力,是中檔題.8、D【解析】試題分析:設點(4,0)關于直線5x+4y+21=0的對稱點是,則點在直線5x+4y+21=0上,將選項代入就可排除A,B,C,答案為D考點:點關于直線對稱,排除法的應用9、C【解析】

先計算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長.【詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長l=2r故答案選C【點睛】本題考查了圓的弦長公式,意在考查學生的計算能力.10、D【解析】

利用特殊角的三角函數(shù)值得出點的坐標,然后利用正弦的定義,求得的值.【詳解】依題意可知,所以,故選D.【點睛】本小題主要考查三角函數(shù)的定義,考查特殊角的三角函數(shù)值,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、30°【解析】

直接利用正弦定理得到或,再利用大角對大邊排除一個答案.【詳解】即或,故,故故答案為【點睛】本題考查了正弦定理,沒有利用大角對大邊排除一個答案是容易發(fā)生的錯誤.12、【解析】

∵,∴∴=1×[+]=1.故答案為:1.13、【解析】

利用成等比數(shù)列得到,再利用余弦定理可得,而根據(jù)正弦定理和成等比數(shù)列有,從而得到所求之值.【詳解】∵成等比數(shù)列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因為,所以,故.故答案為.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.14、或【解析】

根據(jù)題意可得圓心到直線的距離為,根據(jù)點到直線的距離公式列方程解出即可.【詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【點睛】本題主要考查了直線和圓相交的弦長公式,以及點到直線的距離公式,考查運算能力,屬于中檔題.15、【解析】因為圓心坐標與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應填答案.16、3【解析】

利用向量共線的坐標公式,列式求解.【詳解】因為向量與向量共線,所以,故答案為:3.【點睛】本題考查向量共線的坐標公式,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】

根據(jù)一元二次不等式的解法直接求解即可.【詳解】因為方程的根為:,,所以不等式的解集為.故答案為:.【點睛】本題考查一元二次不等式的解法,考查對基礎知識和基本技能的掌握,屬于基礎題.18、(1)42;(2)78;(3)平均數(shù)為7.4,方差為2.24【解析】

(1)根據(jù)隨機數(shù)表依次讀取數(shù)據(jù)即可,取01~80之間的數(shù)據(jù);(2)根據(jù)系統(tǒng)抽樣,確定組矩,計算可得;(3)根據(jù)平均數(shù)和方差得出數(shù)據(jù)的整體關系,整體代入求解10名選手的平均數(shù)和方差.【詳解】(1)根據(jù)題意讀取的編號依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,所以抽取的第6個觀眾的編號為42;(2)若采用系統(tǒng)抽樣,組矩為8,最小編號為06,則最大編號為6+9×8=78;(3)記選擇科技類的6人成績分別為:,選擇文藝類的4人成績分別為:,由題:,,,,所以這10名選手的平均數(shù)為方差為【點睛】此題考查統(tǒng)計相關知識,涉及隨機數(shù)表讀數(shù),系統(tǒng)抽樣和平均數(shù)與方差的計算,對計算公式的變形處理要求較高.19、(1)2425(2)【解析】

(1)結合α為銳角利用同角三角函數(shù)的關系,結合倍角公式即可求值;(2)結合α,β為銳角,求出tan(α+β),利用兩角和的正切公式即可求出tan【詳解】(1)因為α為銳角,tanα=43所以sin(2)因為α,β為銳角,cos(α+β)=-所以sin(α+β)=2因為tan(α+β)=tanα+tan【點睛】本題考查同角三角函數(shù)之間的關系以及倍角公式,同時考查了兩角和的正切公式,屬于中檔題.20、(1);(2).;(3).【解析】試題分析:(1)對二項式系數(shù)進行討論,可得求出解集即可;(2)分為,,分別解出3種情形對應的不等式即可;(3)將問題轉化為對任意的,不等式恒成立,利用分離參數(shù)的思想得恒成立,求出其最大值即可.試題解析:(1)①當即時,,不合題意;②當即時,,即,∴,∴(2)即即①當即時,解集為②當即時,∵,∴解集為③當即時,∵,所以,所以∴解集為(3)不等式的解集為,,即對任意的,不等式恒成立,即恒成立,因為恒成立,所以恒成立,設則,,所以,因為,當且僅當時取等號,所以,當且僅當時取等號,所以當時,,所以點睛:本題主要考查了含有參數(shù)的一元二次不等式的解法,考查了分類討論的思想以及轉化與化歸的能力,難度一般;對于含有參數(shù)的一元二次不等式常見的討論形式有如下幾種情形:1、對二次項系數(shù)進行討論;2、對應方程的根進行討論;3、對應

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論