版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆江西省贛州市南康中學高一數(shù)學第二學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,取值如下表:014561.3m3m5.67.4畫散點圖分析可知:與線性相關,且求得回歸方程為,則m的值(精確到0.1)為()A.1.5 B.1.6 C.1.7 D.1.82.數(shù)列,…的一個通項公式是()A.B.C.D.3.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為()A.13+5 B.11+5 C.4.經(jīng)過點,和直線相切,且圓心在直線上的圓方程為()A. B.C. D.5.的內(nèi)角的對邊分別為,若,則()A. B. C. D.6.已知非零實數(shù)a,b滿足,則下列不等關系一定成立的是()A. B. C. D.7.用數(shù)學歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a48.在中,角A、B、C的對邊分別為a、b、c,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形9.給定函數(shù):①;②;③;④,其中奇函數(shù)是()A.① B.② C.③ D.④10.盒中裝有除顏色以外,形狀大小完全相同的3個紅球、2個白球、1個黑球,從中任取2個球,則互斥而不對立的兩個事件是()A.至少有一個白球;至少有一個紅球 B.至少有一個白球;紅、黑球各一個C.恰有一個白球:一個白球一個黑球 D.至少有一個白球;都是白球二、填空題:本大題共6小題,每小題5分,共30分。11.若直線與圓相切,則________.12.把二進制數(shù)1111(2)化為十進制數(shù)是______.13.已知三棱錐(如圖所示),平面,,,,則此三棱錐的外接球的表面積為______.14.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的體積為__________.15.函數(shù),的反函數(shù)為__________.16.已知函數(shù)的圖象關于點對稱,記在區(qū)間的最大值為,且在()上單調(diào)遞增,則實數(shù)的最小值是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在數(shù)1和100之間插入個實數(shù),使得這個數(shù)構(gòu)成遞增的等比數(shù)列,將這個數(shù)的乘積記作,再令.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,求數(shù)列的前項和.18.在銳角中,角的對邊分別是,且.(1)求角的大??;(2)若,求面積的最大值.19.已知函數(shù)(1)若關于的不等式的解集為,求的值;(2)若對任意恒成立,求的取值范圍.20.已知函數(shù),其中.(1)若函數(shù)在區(qū)間內(nèi)有一個零點,求的取值范圍;(2)若函數(shù)在區(qū)間上的最大值與最小值之差為2,且,求的取值范圍.21.為了了解某省各景區(qū)在大眾中的熟知度,隨機從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個國家級旅游景區(qū)?”,統(tǒng)計結(jié)果如下表所示:組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);(3)在(2)中抽取的人中隨機抽取人,求所抽取的人中恰好沒有年齡段在的概率
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)表格中的數(shù)據(jù),求得樣本中心為,代入回歸直線方程,即可求解.【詳解】由題意,根據(jù)表格中的數(shù)據(jù),可得,,即樣本中心為,代入回歸直線方程,即,解得,故選C.【點睛】本題主要考查了回歸直線方程的應用,其中解答中熟記回歸直線方程的基本特征是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、D【解析】試題分析:由題意得,可采用驗證法,分別令,即可作出選擇,只有滿足題意,故選D.考點:歸納數(shù)列的通項公式.3、B【解析】
三視圖可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成.【詳解】幾何體可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成S=【點睛】已知三視圖,求原幾何體的表面積或體積是高考必考內(nèi)容,主要考查空間想象能力,需要熟練掌握常見的幾何體的三視圖,會識別出簡單的組合體.4、B【解析】
設出圓心坐標,由圓心到切線的距離和它到點的距離都是半徑可求解.【詳解】由題意設圓心為,則,解得,即圓心為,半徑為.圓方程為.故選:B.【點睛】本題考查求圓的標準方程,考查直線與圓的位置關系.求出圓心坐標與半徑是求圓標準方程的基本方法.5、B【解析】
首先通過正弦定理將邊化角,于是求得,于是得到答案.【詳解】根據(jù)正弦定理得:,即,而,所以,又為三角形內(nèi)角,所以,故選B.【點睛】本題主要考查正弦定理的運用,難度不大.6、D【解析】
根據(jù)不等式的基本性質(zhì),一一進行判斷即可得出正確結(jié)果.【詳解】A.,取,顯然不成立,所以該選項錯誤;B.,取,顯然不成立,所以該選項錯誤;C.,取,顯然不成立,所以該選項錯誤;D.,由已知且,所以,即.所以該選項正確.故選:.【點睛】本題考查不等式的基本性質(zhì),屬于容易題.7、C【解析】
在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【詳解】解:用數(shù)學歸納法證明,
在驗證時,把當代入,左端.
故選:C.【點睛】此題主要考查數(shù)學歸納法證明等式的問題,屬于概念性問題.8、D【解析】
由正弦定理化簡,得到,由此得到三角形是等腰或直角三角形,得到答案.【詳解】由題意知,,結(jié)合正弦定理,化簡可得,所以,則,所以,得或,所以三角形是等腰或直角三角形.故選D.【點睛】本題考查了正弦定理和余弦定理在解三角形中的應用.在解三角形問題中經(jīng)常把邊的問題轉(zhuǎn)化成角的正弦或余弦函數(shù),利用三角函數(shù)的關系來解決問題,屬于基礎題.9、D【解析】試題分析:,知偶函數(shù),,知非奇非偶,知偶函數(shù),,知奇函數(shù).考點:函數(shù)奇偶性定義.10、B【解析】
根據(jù)對立事件和互斥事件的定義,對每個選項進行逐一分析即可.【詳解】從6個小球中任取2個小球,共有15個基本事件,因為存在事件:取出的兩個球為1個白球和1個紅球,故至少有一個白球;至少有一個紅球,這兩個事件不互斥,故A錯誤;因為存在事件:取出的兩個球為1個白球和1個黑球,故恰有一個白球:一個白球一個黑球,這兩個事件不互斥,故C錯誤;因為存在事件:取出的兩個球都是白球,故至少有一個白球;都是白球,這兩個事件不互斥,故D錯誤;因為至少有一個白球,包括:1個白球和1個紅球,1個白球和1個黑球,2個白球這3個基本事件;紅、黑球各一個只包括1個紅球1個白球這1個基本事件,故兩個事件互斥,因還有其它基本事件未包括,故不對立.故B正確.故選:B.【點睛】本題考查互斥事件和對立事件的辨析,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
利用圓心到直線的距離等于半徑列方程,解方程求得的值.【詳解】由于直線和圓相切,所以圓心到直線的距離,即,由于,所以.故答案為:【點睛】本小題主要考查直線和圓的位置關系,考查點到直線的距離公式,屬于基礎題.12、.【解析】
由二進制數(shù)的定義可將化為十進制數(shù).【詳解】由二進制數(shù)的定義可得,故答案為:.【點睛】本題考查二進制數(shù)化十進制數(shù),考查二進制數(shù)的定義,考查計算能力,屬于基礎題.13、【解析】
由于圖形特殊,可將圖形補成長方體,從而求長方體的外接球表面積即為所求.【詳解】,,,,平面,將三棱錐補形為如圖的長方體,則長方體的對角線,則【點睛】本題主要考查外接球的相關計算,將圖形補成長方體是解決本題的關鍵,意在考查學生的劃歸能力及空間想象能力.14、.【解析】
根據(jù)棱錐的結(jié)構(gòu)特點,確定所求的圓柱的高和底面半徑.【詳解】由題意四棱錐的底面是邊長為的正方形,側(cè)棱長均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,圓柱的底面半徑為,一個底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【點睛】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎題.15、【解析】
將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【詳解】因為,所以,則反函數(shù)為:且.【點睛】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.16、【解析】,所以,又,得,所以,且求得,又,得單調(diào)遞增區(qū)間為,由題意,當時,。點睛:本題考查三角函數(shù)的化簡及性質(zhì)應用。本題首先考查三角函數(shù)的輔助角公式應用,并結(jié)合對稱中心的性質(zhì),得到函數(shù)解析式。然后考察三角函數(shù)的單調(diào)性,利用整體思想求出單調(diào)區(qū)間,求得答案。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(1)類比等差數(shù)列求和的倒序相加法,將等比數(shù)列前n項積倒序相乘,可求,代入即可求解.(2)由(1)知,利用兩角差的正切公式,化簡,,得,再根據(jù)裂項相消法,即可求解.【詳解】(Ⅰ)由題意,構(gòu)成遞增的等比數(shù)列,其中,則①②①②,并利用等比數(shù)列性質(zhì),得(Ⅱ)由(Ⅰ)知,又所以數(shù)列的前項和為【點睛】(Ⅰ)類比等差數(shù)列,利用等比數(shù)列的相關性質(zhì),推導等比數(shù)列前項積公式,創(chuàng)新應用型題;(Ⅱ)由兩角差的正切公式,推導連續(xù)兩個自然數(shù)的正切之差,構(gòu)造新型的裂項相消的式子,創(chuàng)新應用型題;本題屬于難題.18、(1);(2)【解析】
(1)利用正弦定理邊轉(zhuǎn)化為角,逐步化簡,即可得到本題答案;(2)由余弦定理得,,綜合,得,從而可得到本題答案.【詳解】(1)因為,所以,即,所以,又,所以,由為銳角三角形,則;(2)因為,所以,所以,即(當且僅當時取等號),所以.【點睛】本題主要考查利用正弦定理邊角轉(zhuǎn)化求角,以及余弦定理和基本不等式綜合運用求三角形面積的最大值.19、(1);(2)【解析】
(1)不等式可化為,而解集為,可利用韋達定理或直接代入即可得到答案;(2)法一:討論和時,分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關系可知,解得,經(jīng)檢驗時滿足題意.法二:由題意知,原不等式所對應的方程的兩個實數(shù)根為和4,將(或4)代入方程計算可得,經(jīng)檢驗時滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當且僅當時取等號,所以,即.故實數(shù)的取值范圍為.法二:二次函數(shù)的對稱軸為.①若,即,函數(shù)在上單調(diào)遞增,恒成立,故;②若,即,此時在上單調(diào)遞減,在上單調(diào)遞增,由得.故;③若,即,此時函數(shù)在上單調(diào)遞減,由得,與矛盾,故不存在.綜上所述,實數(shù)的取值范圍為.【點睛】本題主要考查一元二次不等式的性質(zhì),不等式恒成立中含參問題,意在考查學生的分析能力,計算能力及轉(zhuǎn)化能力,難度較大.20、(1);(2).【解析】
(1)解方程的根,則根在區(qū)間內(nèi),即可求出的范圍即可;(2)根據(jù)函數(shù)的單調(diào)性求出最大,最小,作差得,從而得到關于的不等式,解出即可.【詳解】(1)由,得,由得:,所以的范圍是.(2)在遞增,,,,,由,得,,解得:.【點睛】本題考查對數(shù)函數(shù)的性質(zhì)、函數(shù)的單調(diào)性、最值等問題,考查轉(zhuǎn)化與化歸思想,求解過程中要會靈活運用換元法進行問題解決.21、(1),,,;(2)分邊抽取2,3,1人;(3).【解析】
(1)根據(jù)數(shù)據(jù)表和頻率分布直方圖可計算得到第組的人數(shù)和頻率,從而可得總?cè)藬?shù);根據(jù)總數(shù)、頻率和頻數(shù)的關系,可分別計算得到所求結(jié)果;(2)首先確定第組的總?cè)藬?shù),根據(jù)分層抽樣原則計算即可得到結(jié)果;(3)首先計算得到基本事件總數(shù);再計算出恰好沒有年齡段在包含的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】(1)第組的人數(shù)為:人,第組的頻率為:第一組的頻率為第一組的人數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工年終個人總結(jié)
- 2025版離婚協(xié)議書模板及子女撫養(yǎng)細則3篇
- 二零二五年分布式光伏發(fā)電購售電合作協(xié)議3篇
- 物資公司工作總結(jié)-物資個人年終工作總結(jié)
- 2025版高端裝備制造股份公司設立股東技術(shù)創(chuàng)新協(xié)議3篇
- 北京培黎職業(yè)學院《西洋管弦樂合奏Ⅴ》2023-2024學年第一學期期末試卷
- 2025年度程海流域生態(tài)保護與修復工程咨詢合同2篇
- 幼兒園認知香蕉課程設計
- 2025版室內(nèi)外裝修一體化合同轉(zhuǎn)讓及項目管理協(xié)議3篇
- 挖掘機課程設計無履帶
- 研究生英語閱讀教程(基礎級)第三版-課后習題答案
- 【高等數(shù)學練習題】皖西學院專升本自考真題匯總(附答案解析)
- 文件袋、檔案袋密封條模板
- 校本課程《典籍里的中國》教案
- 四年級上冊信息技術(shù)教案-9演示文稿巧編輯 |人教版
- 2022年人力資源管理各專業(yè)領域必備知識技能
- 租賃(出租)物品清單表
- 提高聚氯乙烯卷材地面一次驗收合格率
- 甲型H1N1流感防治應急演練方案(1)
- LU和QR分解法解線性方程組
- 漏油器外殼的落料、拉深、沖孔級進模的設計【畢業(yè)論文絕對精品】
評論
0/150
提交評論