版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣西欽州市2023-2024學(xué)年中考數(shù)學(xué)四模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或12.如圖1是2019年4月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關(guān)系的式子中不正確的是()A.a(chǎn)﹣d=b﹣c B.a(chǎn)+c+2=b+d C.a(chǎn)+b+14=c+d D.a(chǎn)+d=b+c3.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學(xué)記數(shù)法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時4.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)5.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.6.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=7.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a68.估計﹣÷2的運算結(jié)果在哪兩個整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和49.內(nèi)角和為540°的多邊形是()A. B. C. D.10.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個 B.3個 C.2個 D.1個二、填空題(共7小題,每小題3分,滿分21分)11.如圖,“人字梯”放在水平的地面上,當(dāng)梯子的一邊與地面所夾的銳角為時,兩梯角之間的距離BC的長為周日亮亮幫助媽媽整理換季衣服,先使為,后又調(diào)整為,則梯子頂端離地面的高度AD下降了______結(jié)果保留根號.12.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.13.請寫出一個開口向下,并且與y軸交于點(0,1)的拋物線的表達(dá)式_________14.如圖,在Rt△ABC中,E是斜邊AB的中點,若AB=10,則CE=____.15.如圖,⊙C經(jīng)過原點且與兩坐標(biāo)軸分別交于點A與點B,點B的坐標(biāo)為(﹣,0),M是圓上一點,∠BMO=120°.⊙C圓心C的坐標(biāo)是_____.16.在直角坐標(biāo)系平面內(nèi),拋物線y=3x2+2x在對稱軸的左側(cè)部分是_____的(填“上升”或“下降”)17.如圖,折疊長方形紙片ABCD,先折出對角線BD,再將AD折疊到BD上,得到折痕DE,點A的對應(yīng)點是點F,若AB=8,BC=6,則AE的長為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點M(B,M,D三點在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°和60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)19.(5分)如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F(xiàn),已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.20.(8分)如圖,直線與雙曲線相交于、兩點.(1),點坐標(biāo)為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標(biāo)21.(10分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標(biāo)為1.(1)寫出拋物線的函數(shù)表達(dá)式;(2)判斷△ABC的形狀,并證明你的結(jié)論;(3)平面內(nèi)是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標(biāo),如果不存在,說說你的理由.22.(10分)綜合與實踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當(dāng)點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標(biāo)注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為.23.(12分)如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關(guān)系?試說明理由;(3)若AD=4,AB=6,求的值.24.(14分)如圖,在△ABC中,AB=AC=4,∠A=36°.在AC邊上確定點D,使得△ABD與△BCD都是等腰三角形,并求BC的長(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
當(dāng)k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當(dāng)k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當(dāng)k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當(dāng)k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.2、A【解析】
觀察日歷中的數(shù)據(jù),用含a的代數(shù)式表示出b,c,d的值,再將其逐一代入四個選項中,即可得出結(jié)論.【詳解】解:依題意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,選項A符合題意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,選項B不符合題意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,選項C不符合題意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,選項D不符合題意.故選:A.【點睛】考查了列代數(shù)式,利用含a的代數(shù)式表示出b,c,d是解題的關(guān)鍵.3、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、A【解析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A5、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.6、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.
y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.
y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.
y=是組合函數(shù),故此選項錯誤.故選B.7、D【解析】
根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關(guān)鍵是掌握各計算法則.8、D【解析】
先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數(shù)的大小,利用夾逼法估算出的大小是解題的關(guān)鍵.9、C【解析】試題分析:設(shè)它是n邊形,根據(jù)題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點:多邊形內(nèi)角與外角.10、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當(dāng)x=2時的點對稱,即當(dāng)x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)題意畫出圖形,進而利用銳角三角函數(shù)關(guān)系得出答案.【詳解】解:如圖1所示:
過點A作于點D,
由題意可得:,
則是等邊三角形,
故BC,
則,
如圖2所示:
過點A作于點E,
由題意可得:,
則是等腰直角三角形,,
則,
故梯子頂端離地面的高度AD下降了
故答案為:.【點睛】此題主要考查了解直角三角形的應(yīng)用,正確畫出圖形利用銳角三角三角函數(shù)關(guān)系分析是解題關(guān)鍵.12、1.【解析】
試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質(zhì).13、(答案不唯一)【解析】
根據(jù)二次函數(shù)的性質(zhì),拋物線開口向下a<0,與y軸交點的縱坐標(biāo)即為常數(shù)項,然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(0,1)∴二次函數(shù)的一般表達(dá)式中,a<0,c=1,∴二次函數(shù)表達(dá)式可以為:(答案不唯一).【點睛】本題考查二次函數(shù)的性質(zhì),掌握開口方向、與y軸的交點與二次函數(shù)二次項系數(shù)、常數(shù)項的關(guān)系是解題的關(guān)鍵.14、5【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CE=AB=5.考點:直角三角形斜邊上的中線.15、(,)【解析】
連接AB,OC,由圓周角定理可知AB為⊙C的直徑,再根據(jù)∠BMO=120°可求出∠BAO以及∠BCO的度數(shù),在Rt△COD中,解直角三角形即可解決問題;【詳解】連接AB,OC,∵∠AOB=90°,∴AB為⊙C的直徑,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,過C作CD⊥OB于D,則OD=OB,∠DCB=∠DCO=60°,∵B(-,0),∴BD=OD=在Rt△COD中.CD=OD?tan30°=,∴C(-,),故答案為C(-,).【點睛】本題考查的是圓心角、弧、弦的關(guān)系及圓周角定理、直角三角形的性質(zhì)、坐標(biāo)與圖形的性質(zhì)及特殊角的三角函數(shù)值,根據(jù)題意畫出圖形,作出輔助線,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.16、下降【解析】
根據(jù)拋物線y=3x2+2x圖像性質(zhì)可得,在對稱軸的左側(cè)部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側(cè)部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數(shù)的圖像及性質(zhì).根據(jù)拋物線開口方向和對稱軸的位置即可得出結(jié)論.17、3【解析】
先利用勾股定理求出BD,再求出DF、BF,設(shè)AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問題.【詳解】∵四邊形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.設(shè)AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案為:3.【點睛】本題考查了矩形的性質(zhì)、勾股定理等知識,解題時,我們常常設(shè)要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當(dāng)?shù)闹苯侨切?,運用勾股定理列出方程求出答案.三、解答題(共7小題,滿分69分)18、通信塔CD的高度約為15.9cm.【解析】
過點A作AE⊥CD于E,設(shè)CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出關(guān)于x的方程,求出方程的解即可.【詳解】過點A作AE⊥CD于E,則四邊形ABDE是矩形,設(shè)CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度約為15.9cm.【點睛】本題考查了解直角三角形,能通過解直角三角形求出AE、BM的長度是解此題的關(guān)鍵.19、(1)8;(2)1.【解析】
(1)由平行四邊形的性質(zhì)和已知條件易證△AOE≌△COF,所以可得AE=CF=3,進而可求出BC的長;(2)由平行四邊形的性質(zhì):對角線互相平分可求出AO+OD的長,進而可求出三角形△AOD的周長.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周長=AO+BO+AD=1.【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定以及全等三角形的性質(zhì),能夠根據(jù)平行四邊形的性質(zhì)證明三角形全等,再根據(jù)全等三角形的性質(zhì)將所求的線段轉(zhuǎn)化為已知的線段是解題的關(guān)鍵.20、(1),;(1),.【解析】
(1)由點A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標(biāo),再由點A的坐標(biāo)利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標(biāo);
(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進而求出P、Q兩點坐標(biāo).【詳解】解:(1)把點A(-1,a)代入一次函數(shù)y=x+4,
得:a=-1+4,解得:a=3,
∴點A的坐標(biāo)為(-1,3).
把點A(-1,3)代入反比例函數(shù)y=,
得:k=-3,
∴反比例函數(shù)的表達(dá)式y(tǒng)=-.
聯(lián)立兩個函數(shù)關(guān)系式成方程組得:解得:或∴點B的坐標(biāo)為(-3,1).
故答案為3,(-3,1);(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA,如圖所示.
∵點B、B′關(guān)于x軸對稱,點B的坐標(biāo)為(-3,1),
∴點B′的坐標(biāo)為(-3,-1),PB=PB′,
∵點A、A′關(guān)于y軸對稱,點A的坐標(biāo)為(-1,3),
∴點A′的坐標(biāo)為(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最?。?/p>
設(shè)直線A′B′的解析式為y=mx+n,
把A′,B′兩點代入得:解得:∴直線A′B′的解析式為y=x+1.
令y=0,則x+1=0,解得:x=-1,點P的坐標(biāo)為(-1,0),
令x=0,則y=1,點Q的坐標(biāo)為(0,1).【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題、待定系數(shù)法求函數(shù)解析式、軸對稱中的最短線路問題,解題的關(guān)鍵是:(1)聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點坐標(biāo);(1)根據(jù)軸對稱的性質(zhì)找出點P、Q的位置.本題屬于基礎(chǔ)題,難度適中,解決該題型題目時,聯(lián)立解析式成方程組,解方程組求出交點坐標(biāo)是關(guān)鍵.21、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【解析】
(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計算公式得到Rt△ABC的內(nèi)切圓的半徑=2,設(shè)△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據(jù)角平分線的性質(zhì)可判斷點P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標(biāo)即可.【詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當(dāng)x=1時,y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內(nèi)切圓的半徑=,設(shè)△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內(nèi)心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點I、P、Q、G為△ABC的內(nèi)角平分線或外角平分線的交點,它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設(shè)直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當(dāng)x=0時,y=2x﹣7=﹣7,則G(0,﹣7);設(shè)直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當(dāng)y=1時,﹣x+13=1,則P(24,1)當(dāng)x=0時,y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、角平分線的性質(zhì)和三角形內(nèi)心的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì)是解題的關(guān)鍵.22、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年預(yù)售房屋購買協(xié)議
- 二零二五年度古建筑修繕與保護工程施工合同(GF)3篇
- 2024年股權(quán)激勵合同標(biāo)的及激勵方案
- 2024版代理記賬公司員工保密與崗位調(diào)動的協(xié)議規(guī)定3篇
- 2024新能源電池供應(yīng)與安裝合同
- 2025版三人聯(lián)合舉辦國際論壇合作協(xié)議書3篇
- 2024洗衣機產(chǎn)品直銷合作框架合同模板3篇
- 2024年金融機構(gòu)與金融機構(gòu)間合作貸款合同3篇
- 2025年度物業(yè)小區(qū)業(yè)主大會組織與管理合同3篇
- 二零二五年叉車租賃合同-倉儲物流配送與維護服務(wù)2篇
- 小學(xué)英語基礎(chǔ)語法
- DZ∕T 0148-2014 水文水井地質(zhì)鉆探規(guī)程(正式版)
- 英語學(xué)習(xí)活動觀下的高中英語課堂活動設(shè)計 論文
- CRTSIII型板式無砟軌道專項施工施工方法及工藝要求
- 2022-2023學(xué)年浙江省湖州市德清縣人教PEP版四年級上冊期末檢測英語試卷【含答案】
- 新人教版數(shù)學(xué)一年級下冊第四單元《100以內(nèi)數(shù)的認(rèn)識》教材解讀
- MOOC 外科護理學(xué)-中山大學(xué) 中國大學(xué)慕課答案
- 托福聽力課件
- 事業(yè)單位年度考核方案
- 2024年土地管理法
- 醫(yī)學(xué)統(tǒng)計學(xué):醫(yī)學(xué)統(tǒng)計學(xué)課后習(xí)題答案
評論
0/150
提交評論